Rules for Matrix Algebra

MA 2071

 

1.Matrix multiplication is, in general, not commutative. That is, in general,ABBA.�� What this means is that one should not change the order of matrices in an expression, unlike ordinary algebra. (see examples from class 3/17)

 

2. Matrix multiplication is linear.This is a very important concept! It amounts to , if c and k are scalars,

 

��������������������� A(cX+kY)=cAX + k AY��

 

����������� in other words you can distribute products and you can factor constants out.

 

����������� You have seen this concept in other places:

 

����������������������� in Calculus I, derivatives are linear��� d(c f(x)������ + k g(x))=c df�� +�� kdg

����������������������������������������������������������������������������������� dx�������������� ��������������������dx��������� dx

 

����������������������� in Calculus II, integrals are linear

�����������������������������������������������������������������������������������

 

����������� Also Fourier Transforms, important to Signal Processing, are linear

 

����������������������������������������������������������� F( c(f(t)+kg(t) )= c F (f(t))+k F (g(t))

 

����������� and Laplace Transforms, used in systems analysis, are linear

 

����������������������� ����������������������������������� L( c(f(x)+kg(x) )= c L(f(x))+k L(g(x))

 

 

3.Matrix algebra is a binary operation. This means that at any time, no matter how many matrices are involved

in an expression, you are only multiplying or adding two at a time.You have your choice of which two, as long as

you do not reverse the order of multiplication.This is called the associative property:

 

���������������� ������������������ ���(AB)C = A(BC) = ABC

 

4.The identity matrix, In,(1s on diagonal, 0s elsewhere) serves as the multiplicative identity:

 

���������������� ������������������ AIn = A����and ������InA = A

 

���� (so this is an example of a rare time when order does not matter).

 

5.Some , but not all, square matrices have multiplicative inverses. This means another matrix which satisfies

 

���� AB = BA = In

 

���� In such a case, B is denoted byA-1.If a matrix has an inverse, it is called nonsingular in the text book.

���� Lots of matrices do not have inverses, unlike ordinary numbers where only0 has no multiplicative inverse.

���� Those that do not are called singular matrices.