Trigonometry

Solutions

Problem Set #5

 

Use trig identities to simplify each expression as much as possible

 

1.        sin4θ – cos4 θ             sin2θ – cos2 θ            

2.        1 – cos2 θ                   sin2θ

3.        cos8 θ  -  sin8 θ           (cos4 θ  +  sin4 θ)(cos2 θ – sin2 θ)          

4.        cos2 θ  - cos4 θ           cos2 θ sin2 θ

 

Solve the following equation for  x

 

            2sin2xcosx1  =  0

 

            2(1-cos2x) – cosx -1 = 0   (trig identity)

 

            -2cos2x  - cosx  + 2 – 1=0

 

2cos2x  + cosx  - 1 = 0

 

(2cosx -1) (cosx + 1) = 0

 

this happens  if  cosx = ½    or  cosx = -1   which in turn happens if  x = 60°  or  x = 180°

            (but there are lots of other solutions as well since cosine is periodic)