Solutions

Geometry

Problem Set #6

Here we wish to put everything together covered so far.  For each equation listed,

a)      put it in Standard Form for a parabola

b)      identify its vertex

c)      decide if it opens up or down

d)     find the value for d and determine where it’s Focus is

e)      use algebra to find where it intersects the x axis   or show that it does not

f)       sketch it by hand, incorporating all of the information found in parts a) – e)

 

1.   32y + (x-4)2 = 64

a)  Standard Form :    b) Vertex:  (-4,2)   c) down    d)  d=8

 

e)  y=0  =>  (x+4)2 = 64  =>  x+4 = +/-8  =>  x = -4 , -12

 

2.   8y + x2 = -16

 

a)  Standard Form :    b) Vertex:  (0, -2)   c) up    d)  d=2

 

e)  y=0  =>  (x)2 = 16  =>  x = +/-4

 

 

3.   y  -x2 -8x = 0

 a)  Standard Form :  y+16 = (x+4)2   b) Vertex:  (-4,-16)   c) up    d)  d=1/4

 

e)  y=0  =>  (x+4)2 = 16  =>  x+4 = +/-4  =>  x = 0,8

 

 

 

4.   16 y  + x2 -20x -4 = 0

a)  Standard Form :   b) Vertex:  (10,-6)   c) down    d)  d=4

 

e)  y=0  =>  (x-10)2 =  -96  =>  no solution so no intersection with x axis  (vertex below x axis, opens down)

 

 

 

5.   y = x2  +14x + 40

 

a)  Standard Form :  y+9 = (x+7)2   b) Vertex:  (-7,-9)   c) up    d)  d=1/4

 

e)  y=0  =>  (x+7)2 = 9  =>  x+7 = +/-3  =>  x = -10,-4

 

6.   y = x2 - 25

a)  Standard Form :  y+25 = x2   b) Vertex:  (0,-25)   c) up    d)  d=1/4

 

e)  y=0  =>  x2 = 25  =>  x = +/-5