Solutions

Problem Set #5

Geometry

 

1.      In each case below, construct the equation of the parabola having the specified characteristics. Also indicate where the

vertex is

a)   Focus  at (0,5)   and directrix the line   y= -5    solution:      (d=5 here)   vertex at  (0,0)

 

b)   Focus at (0,2)   and directrix  the line  y = -2   solution:            vertex at (0,0)

 

c)   Focus  at (0,4)  and directrix  y=0  (the x axis)   solution:     vertex at  (0,2)

 

d)   Focus  at  ( 3,4)  and directrix  y = -4    solution:            d – 4  ,  vertex  at  (3,0)

 

e)   Focus  at   (3,9)  and directrix the line y = +1   solution:                    d=4,  vertex at  (3,5)

 

f)   Vertex   at  (2,10)  and directrix  3 units  below it  solution:       d = 3 

 

g)   Vertex at  (-3,5)   and directrix  7 units above it  Solution:      note minus sign as this opens down

 

2.      Based on each equation below,  decide

where the vertex is

where the focus is

where the directrix is

whether the parabola opens up or down

 

 

                        a)   20y = x2      vertex at (0,0)   d = 5   so focus at (0,5)  and  y= -5 is the directrix. Opens up.

 

                        b)   y = -x2/12   vertex  at (0,0)  d = 3   Opens down.  focus at (0,-3)   and directrix at y = +3

 

                        c)   y + 3 = (x – 9)2/4   vertex at (9,-3)   opens up.  d=1  focus at (9, -2)  directrix y= -4

 

d) y -4  = -(x + 1)2/36   vertex  (-1,4)  opens down   d=9  focus at (-1,-5)  directrix y = 13

 

 

 

3.      Use algebraic methods on each equation to put it into “standard form”.  Once there, identify where the vertex is and whether the parabola opens up or down.

a.         x2 -8x -  16y = 0             y +16= (1/16)(x -4)2   so vertex at (4, -16)   d = 4  focus at (4, -12)   opens up

 

b.        x2  -32y  + 64 = 0           y -2 = (1/32)x2      so  d = 8  vertex  at (0,2)  focus at  (0,10)   opens up

 

c.         x2  +  16x  - y  + 6 = 0    y +58 = (x+8)2      so  d = 1/4  vertex  at (-8,-58)  focus at  (-8,-57 3/4)   opens up

 

d.        x2  -10x  +  32y = 7        y -1 = (-1/32)(x-5)2      so  d = 8  vertex  at (5,1)  focus at  (5,-7)   opens down