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In this paper, we introduce IndexPen, a novel interaction technique for text input through two-finger in-air micro-gestures,
enabling touch-free, effortless, tracking-based interaction, designed to mirror real-world writing. Our system is based on
millimeter-wave radar sensing, and does not require instrumentation on the user. IndexPen can successfully identify 30
distinct gestures, representing the letters A-Z, as well as Space, Backspace, Enter, and a special Activation gesture to prevent
unintentional input. Additionally, we include a noise class to differentiate gesture and non-gesture noise. We present our
system design, including the radio frequency (RF) processing pipeline, classification model, and real-time detection algorithms.
We further demonstrate our proof-of-concept system with data collected over ten days with five participants yielding 95.89%
cross-validation accuracy on 31 classes (including noise). Moreover, we explore the learnability and adaptability of our system
for real-world text input with 16 participants who are first-time users to IndexPen over five sessions. After each session, the
pre-trained model from the previous five-user study is calibrated on the data collected so far for a new user through transfer
learning. The F-1 score showed an average increase of 9.14% per session with the calibration, reaching an average of 88.3% on
the last session across the 16 users. Meanwhile, we show that the users can type sentences with IndexPen at 86.2% accuracy,
measured by string similarity. This work builds a foundation and vision for future interaction interfaces that could be enabled
with this paradigm.
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Fig. 1. IndexPen enables in-air two-finger text input on devices with limited physical size and no instrumentation required
to be worn on the hand. For example, it could provide a contact-free typing interface on public devices such as ATMs to
improve hygiene. It provides an alternative to typing on a small screen where typing is challenging and voice input is not
appropriate or feasible. IndexPen recognizes gestures akin to handwriting including 30 classes. The system processes the
speed and angular profile generated by a miniature radar device and uses neural networks to detect the gestures.

1 INTRODUCTION
Recent work has shown that millimeter-wave (mmWave) radar sensors, which are becoming viable in a small form
factor, can track finger motion in a 3-dimensional space, opening new doors for human-computer interaction. In
particular, this technology could allow for gesture recognition as input to systems, when other modalities are
not practical (Figure 1). For example, providing text input on a smartwatch is challenging due to the small size,
and voice input is not always convenient or appropriate in certain contexts. In addition, radar-based input has
potential to work through materials, so it could enable simple input without requiring a device to be taken out
of a pocket. Further, because it is touch-free, it could provide more hygienic interactions in public spaces and
medical settings.

With the recent integration of radar sensors into commercial mobile devices (e.g. Google’s Pixel 4), we envision
an increasing use of such sensors in new contexts. To realize this potential, there are several technical challenges
that must be overcome and considerations that are specific to radar-based user interfaces. Most previous work
using radar sensors only support a limited vocabulary [3, 55, 61], and do not fully exploit the complex features
available from mmWave radars.
In this paper, we make a systems contribution showing a novel prototype that supports text entry and has

the potential to work in ubiquitous settings, which is important in wearable interaction, augmented and virtual
reality, and other reality-based interaction paradigms [23]. IndexPen takes advantage of mmWave radar to
recognize micro-gestures performed with two fingers as the sole mode of interaction, and without requiring any
instrumentation on the user. IndexPen is aimed at extending desktop interaction experiences to smaller devices
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with limited processing power. The proof-of-concept system demonstrates novel human-computer interaction
that goes beyond existing mmWave radar user interfaces.
Our main contributions are as follows:
(1) We present the design and functionality of IndexPen, which enables users to input text by writing the

English alphabet with the index finger on the face of the thumb. It is intended to reproduce the feeling of
writing with tangible instruments. To achieve an acceptable typing experience and combat the static noise,
the gesture set includes 30 distinct symbols (26 letters and additional utility characters including space,
backspace, enter, activation). The activation gesture is designed to activate and deactivate the IndexPen and
avoid unintended input, and we also include noise data to differentiate the gestures and static noise.

(2) We detail the real-time processing pipeline we have developed to support the IndexPen interaction paradigms.
It utilizes two major feature sets from mmWave radar. The model takes these features as mixed input and
uses convolutional recurrent neural networks (CRNN) to resolve what gesture is being performed. The
predicted probability from the neural networks is processed with a debouncing algorithm to yield keyboard-
like character input. We also report experiment results with a clutter removal algorithm which significantly
increases the robustness of the model and shows that the IndexPen approach is able to distinguish 30
IndexPen symbols with a high 10-fold cross-validation accuracy of 95.89% over 31,000 gesture samples.

(3) We investigate considerations for practical real-world usage of IndexPen with new users writing full
sentences. We demonstrate the generalizability of IndexPen to new users through a series of experiment
with user-specific calibration based on transfer learning. After adapting to new users’ writing with 20
samples per class in the leave-one-out experiment, the model achieved 87.55% accuracy across five users.
We further investigate the learnability of designed gestures and the robustness of the IndexPen pipeline in
real-world text input scenario with 16 participants over five sessions on separate days and collect their
suggestions and feedback for IndexPen through the experiment process. We analyzed both factors through
objective quantitative results and subjective participant feedback, providing valuable analytical results to
other researchers in gesture motion detection area. The average F-1 score across over all participants and
the average string similarity [19] in the last session is 0.8815 and 0.8619. Our work addressed the undefined
variance between individuals [55] in gesture motion detection.

We also share our compiled data, including the video recording for participants’ hands, and the source code
for the radar firmware and the data collection software, and the script that processes the data and provides the
evaluation results. Additionally, the instruction software (Figure 19), data recording interface (Figure 20), and
real-time inference interface (Figure 21) can extend to other HCI studies and benefit the community. The detailed
description can be found in Appendix A.3 1.

2 RELATED WORK
Our work builds on previous work on micro-gesture recognition as well as on radar-based user interfaces. We
provide background on these in the sections below. We also discuss the broader category of radio frequency-based
signals that can be used in HCI.

2.1 Micro-gestures in HCI
With the increase in micro-gestures in HCI, there have been numerous types of gestures proposed. To gain
insight into end-user preferences, Chan et al. [7] conducted a user elicitation study of single-hand micro-gestures,
and we refer the reader to this paper for an in-depth exploration. Their study identified four main categories of
micro-gestures: tap, swipe, draw, and circle. They also found that out of the four, taps and swipes were the most
commonly used by end-users.
1https://github.com/ApocalyVec/IndexPenDemo
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The Draw was not frequently used by end-users but is the basis of the IndexPen interaction we present. Because
we propose an alphabet resembling handwriting, the draw gestures can be easily remembered, which may have
been an issue for other draw gestures. Due to the fact that the thumb can comfortably reach the other parts of
the hand, Chat et al. found that the thumb was used more frequently in general, and was used on all the elicited
swipe gestures performed by the participants [7]. In IndexPen, we combine the thumb and the index finger.

2.2 Form Factors for Enabling Microgestures
Different form factors for enabling micro-gestures in the hand have been explored. These can be categorized by
whether they take an on-body or an in-air approach.

2.2.1 On-body. On-body devices have been proposed for micro-gesture detection of the hand as they can capture
physical or physiological data well through direct contact with the user’s skin. TipText [66] is a miniature QWERTY
keyboard broken into a grid with several letters in each section. The physical device is a conductive flexible
printed circuit wrapped around the tip of the index finger, sensitive to touch. By clicking the tip of the index
finger with the thumb, users can select a grid section and the specific letter within that section is disambiguated
using a language model. Benefiting from the small size, TipText has the potential to be integrated with watches
and smartphones. Electromyography (EMG), which senses muscle activation during motor movements of the
hand and fingers, provides another way to detect gestures by directly decoding the muscle activities [50, 51].
EMG sensors are usually taped to the skin to receive a direct reading of the electrical fields. Unlike mmWave
sensing, the user is required to have application-specific sensors attached to their body. When the sensor is
mounted to areas such as the tips of the fingers, it can hinder the user’s ability to perform other tasks such as
typing. Force-sensitive resistors were used inWristFlex to successfully recognize subtle finger pinch gestures
[13]. FingerPad [8] has the most similar interaction properties to IndexPen but uses two nail-mounted devices
that detect magnetic field intensities and transforms that to coordinates for a user interface.

2.2.2 In-air. Compared to on-body methods, in-air approaches, such as IndexPen, for gesture detection may be
more favorable as they do not require the user to attach any electronics to the body. This removes some of the
device-specific constraints and can present advantages on aspects of sanitation, aesthetics, and utility.
For micro-gesture detection, many optical methods are used to extract the features of the user. A 3-D time-

of-flight (ToF) camera [28] has been used to simplify segmentation between the hand and arm. In using a
time-of-flight camera, the depth features are included to distinguish certain gestures. Some gestures may have
the same projections if captured by a 2D camera. Depth information has the advantage of providing another
rich set of features about the distance between the sensor and the parts of the hand while gesturing. However,
the ToF camera has disadvantages comparing to 2D camera and that is its low spatial resolution. Decoding
fine finger movements often requires millimeter-level accuracy at close range [61], which is hard for the ToF
camera to identify dynamics at these small scales. Marin et al. demonstrated the effectiveness of using the Kinect
camera in human body recognition [39]. They first extracted the gestures from the acquired depth and color data
and then two different types of features were computed from the 3D points corresponding to the hand. They
also explored Leap Motion’s optical method and reported that it differs from the depth camera which returns a
complete depth map. The LeapMotion provides a higher level but more limited data description while Kinect
provides the full depth map. LeapMotion provides the coordinates of the major joints of the hands [63]. However,
as a camera based approach, the LeapMotion uses approximation when the finger overlaps [26], making it harder
to discriminate micro-finger gestures as their design often involves touching between fingers [16, 61, 66]. On the
other hand, the velocity information obtained by mmWave sensors can be advantageous in this case as it shows
the fine dynamics of the fingers moving at different speeds [22].
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In addition to camera-based 3D tracking, magnetic sensing [9] allows precise multiple fingertip tracking. It
requires users to attach electromagnet on the tracking target. SkinTrack [70] treats the skin on the arm as a
2D touch surface that can detect hover and touch events. It is enabled by an RF pulse emitter attached to the
gesturing finger and an electrode band worn on the wrist. By contrast, mmWave radar sensing does not require
any additional equipment on user’s body, making it possible to be used as a universal input modality such as an
elevator button or on ATM.
Larger gestures have also been explored in air, without instrumentation. Researchers have explored mouse

control via nose or head gestures [15, 60], in ubiquitous settings without on-body sensors. These systems has
lower resolution since they are based on the movement of the head, and also can be inconvenient in some settings.
Other hands-based in-air input methods leverage large-scale gestures and cannot reach high input resolution
because individuals may move their hands in different ways [1].

2.3 Enabling Interactions with Millimeter-Wave Radar and Other Radio Frequency Cloud Data
With IndexPen, we aim to capture in-air micro-gestures and control the coordinates in a mobile device accurately
and conveniently. To do this, we use millimeter-wave radar, which is one type of radio frequency (RF) information
that is increasingly available for human-computer interaction applications [42]. Radio-frequency (RF) data from
existing infrastructure (e.g. WiFi, Radio-frequency identification (RFID), unmodified global system for mobile
communications (GSM)) have been explored to recognize human activities [20, 59], locations [59], and gestures
[38, 46, 71, 72]. This is accelerating as 5G standards emerge, with devices possessing increased speed, reduced
latency, and increased energy efficiency, and lower cost [42].

Millimeter-wave radar’s frequency-modulated continuous-wave (FMCW) transmits a continuous wave modu-
lated in a frequency range, capturing spatial and temporal information of objects. The data profile has a high
signal frequency and established processing pipelines [18, 22, 31, 32, 49, 55, 68], making possible sub-millimeter
accuracy. In addition, its compact size, low computational cost, and low monetary cost have led to increased
interest and investment [3, 22, 31].

Unlike WiFi-based gesture applications, mmWave radar is a miniature portable device and is not constrained
by the location of the fixed infrastructure (e.g., WiFi router). Having higher spatial and temporal resolution [22],
mmWave sensors can go beyond detecting large-scale gestures (WiFi and camera-based) to sense micro-gestures.
Moreover, unlike computer-vision approaches to gesture recognition, radar user interfaces are not impacted by
ambient light [39], do not require line of sight [26, 63] and are only marginally affected by temperature comparing
to infrared sensing [16]. In addition, radar information contains dynamic profiles that reflect the distance, angle,
and velocity of objects, which can be used for robust gesture detection, with shallower processing pipelines
[61]. Despite the promise of mmWave for interaction, there are some limitations [30]. mmWave radars lack
spatial resolution compared to capacitive or optical sensors, making it hard to distinguish similar gestures when
moving fingers reside in close proximity with each other. Further, unlike camera image data, radar data can vary
across different platforms in their size and resolution, which calls for domain-specific models. Real-time gesture
recognition can also be difficult due to the high throughput, requiring solutions with less complex processing
pipelines, often sacrificing some accuracy. Finally, because the features are unique compared to other sensing
technologies, it is not trivial to adapt existing pre-processing and prediction methods. The lack of distinct and
human-readable features also pose difficulties in visualizing the data and creating better models.
With these considerations in mind, radar-based applications have been explored in diverse contexts. Object

detection has been shown with applications in automatic waste sorting, support for the visually impaired, and
medical uses [67]. In-car infotainment control has also been explored with radar-based user interfaces [55].
Smart house control via mmWave sensing [32] allows users to control indoor devices remotely. Pantomime
[43] demonstrated robust recognition of 21 mid-air gestures using mmWave radar in several different indoor
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environments. Unlike IndexPen which explores two-finger microgestures, these gestures were large hand and
arm motions. Other work has demonstrated a gesture recognition pipeline for mmWave data for cursor controls
[30] as well as the recognition of eleven gestures [31, 55], resulting in the creation of post-processing algorithms
[18, 32, 49] to enable real-time interaction. Our work with IndexPen goes further to explore the classification of 31
classes. In addition, the design of the IndexPen gestures facilitate the natural performance of the finger motions
that mimic the paper-and-pen writing experience. The composition of the IndexPen set is further explained in
Section 3.1.

2.4 Deep Learning in Interaction Technologies
Another challenge that novel sensing technologies pose is the complexity of data produced by the sensor. Unlike
the more mature classes of input devices such as traditional keyboard, mouse, or capacitive sensing, devices
utilizing electromagnetic waves propagated in space generate high dimensional data, both spatially and temporally
[16, 30, 32, 45, 63]. To overcome the challenges, researchers look to machine learning algorithms to interpret
the interaction. Among them, deep learning has shown much prominence lately through the use of neural
networks centered on image-based gesture systems [4, 41]. Recent development in radar-based systems have
started to explore this direction as the profile from mmWave sensors can be interpreted graphically (see Section
4.1) [36, 61, 68]. At the same time, past research applying deep learning in the image-processing realm have
shown that immense datasets are needed for building reliable systems. Even when a dataset is extensive given
the application, the models tend to suffer from heavy over-fitting, rendering the system unusable in practice
[40]. Additionally, pre-trained models usually do not work well on new users [12], being over-fitted to the user
group from whom the training samples are collected. Liu et al. [33] take steps toward a user-independent system
by extracting the overall motion trajectory as a high-level feature to minimize the variance between users. The
algorithm calculates the centripetal movement energy and centrifugal movement energy for the entire motion.
The study demonstrated elevated robustness of the model for new users on five gestures.

Other domains with highly complex and user-specific signals, such as brain-computer interfaces, have faced
similar challenges. Widely-used methods to improve the robustness and generalizability of the model are to add
weight penalties during training; it encourages the model to learn at every learning step, therefore stabilizing the
model’s accuracy/loss on validation samples [34, 69]. The user-specificity issue can be mediated with transfer
learning, and real-time calibration [14, 25]. Some recent gesture-related work indeed leverage these techniques
[24]. We later present a detailed analysis to show the effectiveness of these methods in the first and second parts
of the user studies in Sections 5 and 6.

3 INDEXPEN INTERACTION TECHNIQUE
IndexPen’s gestures are all performed with a single hand, using the same hardware. In this section, we provide an
overview of the interaction model and the pipeline for radar signal processing.

3.1 IndexPen Overview
IndexPen enables text entry as gestures performed by the index finger writing on the face of the thumb. To
minimize additional training for the user, we aimed to create an input mode to reflect a person naturally writing
on a paper with a pencil. The movements of the fingers reflect the strokes of hand-written characters. This is
easy for the system to learn and recognize. We took inspiration from the Palm Pilot alphabet [48]. This writing
table was developed in the early days of handwriting recognition, and therefore the strokes are designed so that
they can be easily and correctly interpreted. However, the PalmPilot alphabet was designed for hand-held writing
pads and the features used are the pixel values. For IndexPen, the features are based on the dynamic profiles
produced by mmWave radars.
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Fig. 2. The IndexPen Gesture Alphabet. The basic text-entry interface has 26 letters, a delete, space, enter, activation, and a
noise. The illustration’s gesture is with the right hand on which the green dot represents the starting position for the index
finger on the thumb.

3.2 IndexPen Alphabet
Based on these design considerations, we created the IndexPen gesture alphabet (Figure 2). It includes 30 fingertip
writing gestures, representing 26 letters and four utility keys. While striving for natural movements, we also
take into account whether such gestures are distinguishable through the mmWave radar features. As will be
described below in the Radar Signal Processing section (Section 4.1), the radar detects the range, velocity, and
angle of the objects. Letters with similar starting points, traces, and endpoints are likely to be confused. Based on
these considerations, the letters such as A, F, K, and T are simplified into one-stroke, while letters including O
and V are given embellishments to make them more distinguishable from C and U respectively (Figure 2).
In addition to the 26 English letters, we add four utility characters to the table, including space, delete, enter,

and activation. These characters were designed with an emphasis on the ease of performing the gestures and the
likeness to paper-and-pen writing experiences. The space gesture is a slide towards the directionality of natural
writing (to the right of the written character), whereas the delete gesture is the reverse of the space. Enter is a
forward swap intended to mimic pressing enter to send the message action.
Interaction in a noisy real-world environment can introduce challenges, with unintended gestures being a

prime concern. This is particularly relevant for in-air interaction, which is not restricted to a specific interaction
area (as compared to a touchscreen that is limited to the 2D surface). Gesture spotting is the detection of whether
there is a gesture or not. A low false-negative rate for gesture spotting is essential for avoiding accidental input.
To address this issue, we added a special gesture class that is not a keyboard key - Activation. The Activation
gesture is a quick double-tap between the tip of the index finger and the thumb. This gesture was designed to
have high distinguishability amidst a noisy surrounding in our preliminary studies. The use for this gesture
is to activate/deactivate an input sequence to IndexPen; that is, to use the device, the user first performs the
Activation gesture. Spotting the gesture, IndexPen starts to detect the other 30 text-related gestures. To end the
input sequence, the user would perform Activation again to deactivate IndexPen. Additionally, to distinguish the
static noise and gesture input, we include a Noise class during our data collection in which participants keep
their hands stationary in front of the radar.
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4 INDEXPEN ARCHITECTURE

4.1 Hardware Front-end
Our system is based on the Texas Instrument’s IWR6843AoP (antenna on the package), an integrated compact
mmWave radar device. It operates between 60 to 64 GHz thus giving the best range resolution of around 3.75𝑐𝑚,
well-suited for micro-gesture detection applications.

Fig. 3. The physical appearance of the IWR6843 Antenna-on-Package radar device, and its comparative size. The actual radar
piece (encircle with the white square) is much smaller than the development board (the red part) where it sits.

4.1.1 Radar Abstraction of Gestures. FMCW mmWave Radar can detect the distance, the radial velocity, and the
angle of arrival (AoA) of objects relative to the sensor. The gesture recognition pipeline uses this information to
detect small movements of the finger.

The radial velocity is one of the keys for gesture detection, as the fingers usually reside within the same range,
but during dynamic gestures, fingers typically move at different speeds relative to each other. This creates a
dynamic profile that provides a fertile feature space for micro-gesture detection. We also note the velocity is
sometimes referred to as doppler as the velocity values are linearly mapped from the doppler spread spectrum of
the radar signal.

The radar’s perceptive power is defined by the range and velocity resolutions given by the following formulas:

𝑅𝑟𝑒𝑠 =
𝐶

2 × 𝐹𝐵
(1)

where 𝐹𝐵 is the frequency band where the mmWave radar operates. C is the light speed (3 × 108) m/s.

𝑉𝑟𝑒𝑠 =
𝜆

2𝑇𝑓
(2)

where 𝜆 is the wavelength for the starting frequency of the radar operating frequency band. 𝑇𝑓 is frame duration
dictated by the frame per second (FPS). So a trade-off is shown here between either getting higher velocity
resolution or higher frame-rate (shorter frame duration).

In addition to the range and radial velocity, we must also handle the situation when fingers’ movements move
within a unit of range and velocity resolution (i.e., fingers move at the same speed close to each other). The radar
sensor can also provide angle information, a piece of valuable information for the micro-gesture detection to
determine the geometry of the gesture performing hand. The angle information is calculated through the antenna
array on the radar device. Similar to the resolutions of range and velocity, the angle is given by:

𝜃𝑟𝑒𝑠 =
𝜆

𝑁 × 𝑑 × 𝑐𝑜𝑠 (𝜃 ) (3)
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where 𝑑 is the distance between individual antennas in the antenna array, and 𝜃 is the angle of objects. Equation
3 is non-linear. The angle resolution is the best when 𝜃 is at zero degrees or when the hand is along the central
axis of the radar.

The resolution equations (Equations 1, 2, and 3) above build a foundation for devising a suitable signal shape
for micro-gesture recognition. By using Equations 1 and 2, our parameters for the radar configuration give
𝑟𝑟𝑒𝑠 = 4.4𝑐𝑚, 𝑣𝑟𝑒𝑠 = 0.16𝑚/𝑠 .

This high range and velocity resolution allow for the detection of fine finger motions. Moreover, the non-
linearity of the angle resolution (best when along the central axis) advises that the gesture needs to be performed
directly in front of the radar. In this work, we made an empirical decision as to have the best range and velocity
resolutions. Future studies can investigate how the parameters and resolutions affect the perceptive power of
mmWave radars in resolving micro-gestures.
After each radar signaling cycle, a radar frame is packaged and sent to the next stage of the pipeline. Each

frame includes two dynamic profiles: the range-doppler (RD) and the range-azimuth-elevation (RAE), with
information of the gesture performing hand’s range, velocity, and angle. These are detailed below.

4.1.2 Range-Doppler Profile. The range-doppler profile is obtained at the end of the 2D Fast Fourier Transform
(FFT) (refer to [22] for full detail of the radar RF processing pipeline), which represents the range and velocity
information of the objects in front of the radar. The profile is a two-dimensional matrix with columns being the
velocity and rows being the range. At each point in the matrix, the value is the amplitude calculated through the
2D FFT and represents how strong the reflecting signal is at a specific range and moving at some velocity. It can
help to visualize the features as heatmaps. Figure 4 shows how motions are reflected in the range-doppler profile.

Fig. 4. The range-doppler profile captures the relative power of moving objects (such as fingers) in a particular range, or
distance, from the radar moving at a certain radial velocity relative to the radar. In other words, it provides information about
objects and their distance from, as well as motion towards or away, from the radar.

The number of rows correspond to the number of range bins. We used eight, making the radar able to see
objects up 𝑟𝑚𝑎𝑥 = 𝑟𝑟𝑒𝑠 × 𝑛𝑢𝑚𝑅𝑎𝑛𝑔𝑒𝐵𝑖𝑛𝑠 = 35.2𝑐𝑚. The number of columns corresponds to the number of the
velocity bins, which we set to 16. It gives a maximum detectable velocity 𝑣𝑚𝑎𝑥 =

𝑣𝑟𝑒𝑠×𝑛𝑢𝑚𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

2 = 1.28𝑚/𝑠
(divided by two for positive and negative velocities relative to the radar). These parameters define the gesture
performing range for the system. The number of velocity bins are constrained by the frame time, the data
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processing time, and the transmitting speed of the serial interface. Considering the hardware processing and
transmitting time, we found the best maximum detectable velocity to be 1.28𝑚/𝑠 and with a FPS of 30 seconds. In
our initial testing, we found that on average, the average speed of finger movement during an IndexPen gesture
is 0.64𝑚/𝑠 , and is less than the maximum speed.

4.1.3 Range-Azimuth-Elevation Profile. Range-azimuth profile (Figure 5) is a dynamic feature set given by the
radar. Obtained at the end of the signal processing pipeline, this profile represents angle of arrival (AoA) for
the detected objects. Both the azimuth and the elevation combine into a matrix where the rows are the angle
(azimuth and elevation) between the objects and the radar. The columns are the same as in the range-doppler
profile; it shows how far away the objects are from the radar. The azimuth-elevation axis is non-linear as the
angle resolution degrades as the objects moving away from the central axis of the sensor (Equation 6).

Fig. 5. The range-azimuth-elevation profile provides additional information that enables better micro-gesture detection,
beyond the range-Doppler profile. Unlike the range-Doppler, which just provides velocity to or from the radar, the range-
azimuth-elevation profile captures angle of arrival (direction) by giving the relative power for objects at a specific distance from
the radar at a certain azimuth and elevation angle relative to the radar. Note that the images shown here are a concatenation
of the range-azimuth and range-elevation with the horizontal axis representing both the azimuth and elevation.

4.1.4 Gesture Specifications. In the IndexPen system, we collect frames from the mmWave sensor, with each
frame consisting of an 8 × 16 range-doppler (RD) profile and an 8 × 64 range-azimuth-elevation (RAE) profile.
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Each frame lasts 33𝑚𝑠 , giving 30 FPS. The sequenced frames are then used as the deep learning features in the
next step of the pipeline to give the final IndexPen classification.

4.2 Clutter Removal Algorithm
By observing the raw RD and RAE profile, we find that the static noise from the direct path [35], as shown in
Figure 4 and Figure 5, has a higher value compared to the motion’s response. Therefore, we argue that the model
can over-fit static noise which does not represent any feature related to the written gestures.

To demonstrate our hypothesis, we apply the pixel-wise clutter removal algorithm to each trail before extracting
each sample using the event maker. Clutter removal is a widely used algorithm for static noise removal because of
its low computation cost and simple implementation in a real-time system. Prior work [27] used this approach to
remove static noise from the direct path between transceiver and receiver on ultra-wideband radar, significantly
improving gesture classification accuracy.
The clutter removal algorithm is defined in Equations 4 and 5:

𝑐𝑡 =

{
𝑓 𝑡 𝑡 = 0

𝛼 ∗ 𝑐𝑡−1 + (1 − 𝛼) ∗ 𝑐𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4)

𝑦𝑡 = 𝑓𝑡 − 𝑐𝑡 (5)

𝑓 is the raw profiles from radar, 𝑐 is the clutter frame, and 𝑡 is the current timestamp. 𝛼 within the range [0,1]
defines the signal to clutter ratio that suppresses the new appeared static noise to 𝛼𝑡 . The clutter at time 𝑡 is
defined as Equation 4. The clutter frame at current time 𝑡 is produced from the residual clutter frame at 𝑡 − 1 and
the data matrix at 𝑡 . Then we subtract the clutter matrix by the raw data frame to get the clutter-free matrix 𝑦𝑡 .
In our case, we chose 𝛼 equal to 0.8 which removes most of the static noise fast while sensitive to the motion.
Figure 6 is the visualization of time series RD (top left and top right) and RAE (bottom left and bottom right)
profiles before and after the clutter removal from time 𝑡 − 4 to 𝑡 . We present the effectiveness of clutter removal
for training process in section 5.1.3.

4.3 IndexPen Neural Networks
With the sensor-signal processing pipeline explained above, the physical information of the objects detected
by the radar is represented in range-doppler, and range-azimuth-elevation profiles. As the data streams in, the
sequence of the two profiles form a dynamic profile that is characterized by the gesture performed.

4.3.1 Neural Nets Architecture. In this section, we cover the multiple-input deep learning model that we con-
structed. The model extracts high-level features from the two types of profiles aforementioned and output the
IndexPen classification.
We design the network structure with the following considerations. It has been shown that Convolutional

Neural Networks (CNN) are well-suited for distilling two-dimensional features such as images. CNN captures the
spatial feature of the image-like profiles and is able to extract non-linear, and high-level features such as whole
finger motion, the relative location of specific hand parts, and so on.

Meanwhile, the input contains two profiles, and the model should first merge them. In solving similar problems,
past studies have added a channel dimension and put the multiple images as different channels [62]. For this
system, it is also important to note that the relevant features for gesture detection in range-doppler and range-
azimuth-elevation can differ greatly as the former reflect the radical velocity, and the range-azimuth-elevation is
the spatial information. This fact led us to use two different CNNs for the two profiles, and they do not depend
on each other.
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Fig. 6. This Figure shows the RD and RAE profiles before and after clutter removal for five continuous frames. Top left:
Range-Doppler profile before clutter removal. Top Right: Range-Doppler profile after clutter removal. Bottom Left: Range-
azimuth-elevation profile before clutter removal. Bottom Right: range-azimuth-elevation profile after clutter removal.
The user was moving his hand toward the radar. The clutter removal algorithm applies exponential decay to the data
points that have not changed between the current time point and the previous as shown in Equations 4 and 5. Similar to the
weighted moving average [21], it assigns more weight to more recent movement. We can see the static noise in the middle of
the profiles in the raw RD and RAE profiles shown in the left column whereas their clutter-removed counterparts in the right
column is more descriptive of the current movement.

The extracted feature maps from the two profiles are flattened and concatenated before being sent to the time
distributed layers. As the features are coming in as sequences, time has to be taken into account. That is, the
model needs to look at data in a time interval to make predictions. As traditional neural networks suffer from
the exploding/vanishing gradient problem when dealing with sequenced data, we use long-short-term-memory
(LSTM) layers to solve the problem. LSTM has the capability of gating the information, giving the model another
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level of flexibility to decide what temporal features are important for the gesture detection. In this work, the
interval was set at 4 seconds as we find this is a typical time to perform one writing with IndexPen. Given that
the frame rate of the hardware pipeline is 30 FPS from Section 4.1.2; the number of time steps that the LSTM
layers takes is 120 (30𝑓 𝑟𝑎𝑚𝑒𝑝𝑒𝑟𝑠𝑒𝑐𝑜𝑛𝑑 × 4𝑠𝑒𝑐𝑜𝑛𝑑)
Indeed, prior work [61] showed that Convolutional Recurrent Neural Networks (CRNN) with LSTM cells

perform well in resolving the range-doppler profile in gesture classification. Recent work extends this idea to
that of the range-azimuth-elevation profiles as a second input for the network. Other work [68] demonstrated
that the fusion of two profiles allows the feature extracted from angular information, improving the classification
accuracy of gestures with similar range information but different moving directions. In addition, our work applies
a clutter removal algorithm [27], a recursive denoising algorithm, on both range profiles, significantly reduced
the interference from static noise and showing a remarkable improvement in the robustness of the system’s
ability to detect micro two-finger gestures.

After extracting the spatial and temporal features, the system takes to the standard fully connected (FC) layers.
We make a copy of the extracted features and put them through an FC layer with sigmoid activation functions
that output the IndexPen classification predictions.
With that, we proposed the following neural network model as shown in Figure 7.
As IndexPen is intended to be used in edge computing devices, to facilitate real-time interactions, the network

architecture should be lightweight and low latency for the users to use in practice. With some preliminary
experiments on the trade-off between accuracy and model complexity, we devised the network to contain two
levels of convolutional operations, two LSTM layers, and two FC layers for yielding the tracking and classification
results.

4.3.2 Optimizations to Improve Robustness. To combat over-fitting, we used the standard practice of randomly
dropping nodes trained in the system by specifying dropout rates indicating the percentage of neuron units to
mute in making a prediction with forward propagation. This helps reduce the output dependency on certain
features [57].
Moreover, our preliminary experiment showed that even with the above methodologies that facilitate model

robustness, the validation accuracy is far less than desirable when the input dataset is composed of samples
from multiple users. Sections 4.1.2 and 4.1.3 detail the two types of features that the system uses for dynamic
gesture classification. It is worth reiterating that the above two features have a high temporal resolution (i.e.,
range-Doppler profiles yields speed and range measurement every 33 ms), making them prone to noise and
interference. In real-world settings, random motion in the environment generates background noise in the input
features. Noise can come from sources such as the involuntary tremor of the gesture-performing digits, the rest
of the body, or other people present in the scene. Such random motions are challenging to remove algorithmically
because of the difficulty to distinguish the undesirable motions from the actual gesture.
At the same time, we adopt the commonly used method of windowed classification. We observed that the

four seconds of a dataframe usually only contains classification-critical information that is less than half of the
duration. Therefore, the model needs to account for the sparsity of features in the time window. Additionally,
sparsity is characterized spatially as well as temporally. The radar’s field of view, in order to capture the full
image of the hand in the discussed mobile use cases, is set to be a semi-sphere with a radius of 35.2cm in front of
the sensor device. As shown in Figure 4, the dynamic hand motion is only reflected in a comparatively small
sub-image of the whole range-Doppler profile; the result would be best to not be considered in the identification
of the gestures.
Regularization is the method applied in the IndexPen neural network architecture as a within-neural-nets

method of denoising and dealing with the sparse feature. Regularization is the weight penalty added to the neural
nets’ layers that encourages the weights to become smaller; in other words, it weakens the connection between the
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Fig. 7. IndexPen CRNN Architecture: the two inputs include the profiles for range-Doppler (RD) and range-azimuth-elevation
(RAE) profiles. 2D convolution is then performed on each of the profile feature maps which is fed into LSTM layers. LSTM
cells further extract the temporal information and send copies of their output to the IndexPen FC layers which give the
final prediction of the gesture detected. The RAE features (the heatmap at the upper left) are added to the IndexPen model
and compared with the range-Doppler-only model. That is to see the effect of adding range-azimuth-elevation has on the
performance.

perceptions in general so that the neurons that actually matter (neurons connected with the classification-critical
information) can stand out. Namely, kernel regularizer and recurrent regularizer are applied to the convolutional
and recurrent layers, respectively. Bias regularization is also applied to the above two types of layers to encourage
the model to reason more from the original input than from a specialized bias term, which is prone to get over-
fitted in this case. Lastly, we apply an activity regularizer to limit the output strength to facilitate other regularizers,
and in part also to reduce over-fitting. We show in the first part of the user studies that the introduction of
regularization terms greatly improves the robustness of the model. The regularization hyper-parameters are not
explicitly discussed in this paper as they are specially tuned for the sensor and data preprocessing pipeline we
built. Interested readers may find the source code in the provided GitHub repository.

4.4 Real-time Gesture Detection
The sigmoid activation function at the output layer yields a vector that indicates, in the past 120 timesteps (i.e., 4
seconds), the probability that each of the gestures has been written. The size of the probability vector is thirty
given the thirty classes for classification. The prediction is made on a per-frame basis to give the size-30 vector at
every time step.
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Algorithm 1: IndexPen detection algorithm with debouncer to stabilize input sequence
frame - the current radar frame;
frameBuffer-the queue that holds the frames of the most recent classification window;
debouncer - a list of 30 integers, one for each IndexPen class;
debouncerFrameThreshold - Constant, the number of frames needed for the debouncer to register a detect;
debouncerProbThreshold - constant, the minimal probability needed for the debouncer to consider a gesture
is being performed;
relaxPeriod - constant, the number of frames to ignore after a detection. This is to reduce the error when
writing consecutively same characters.
relaxCounter - ticks during the relax period and raise flag when it counts up to the relaxPeriod
Result: Per-frame detection of gestures 𝑒
while frame do

frameBuffer.push(frame) ;
if relaxCounter == relaxPeriod then

yPred = model.predict(frameBuffer) ;
breakIndices = argwhere(yPred>=debouncerProbThreshold) // in single-frame, letter probability is
above threshold ;
debouncer[breakIndices] += 1 ;
lowerIndices = argwhere(yPred<debouncerProbThreshold) // in single-frame, letter probability is
below threshold ;
debouncer[argwhere(debouncer>0) lowerIndices] -= 1 // decrease the debouncer counter for the
letter whose probability is lower than the threshold
detects=argwhere(debouncer >= debouncerFrameThreshold) // over period of time, letter
probability remains above threshold ;
if any(detects) then

// if a gesture registers an input after debouncing ;
stdin(classes[detects]) // outputs detected keystrokes ;
debouncer = [0] * 30 // reset debouncer ;
relaxCounter = 0 // enters relax period following detection ;

end
end
else

relaxCounter += 1 ;
end

end

As the classifier deals with streams of data, it is also important to see how the predicted probability evolves as
a gesture is being performed.
Figure 8 gives the evolving predicated probability as the radar frames are being fed into the network while

the user is performing the gesture. It is evident that the probabilities for all the gestures show a sudden surge
upward at the second after the gesture onset. Moreover, the probabilities all tend to converge towards the end
of the third second. We note that it is necessary to set thresholds value for both the probability and number of
frames with high probability for determining if an input has actually been made.
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Fig. 8. The temporal probability evolution of Participant P 1-1 (see Section 5) input of sequence "Activation-BackSpace-Hello-
Space- World-Enter-Deactivation". The predict probability of each class shows a arbitrary jittering behavior. The proposed
real-time gesture detection algorithm can successfully output keyboard-like character inputs (indicated in blue).

As seen in Figure 8, the probability of each gesture given by the neural network changes rapidly, which is
partially due to the random motion or tremor in the hand. Further, similar to handwritten characters, some
gestures in the IndexPen alphabet have a similar signature (e.g., P and D, the only difference being the coverage
of the curved stroke). To enable high-precision character input, we apply a simple yet effective debouncing
algorithm.
We implement a simple software debouncer that keeps a size-30 integer vector as the counter for each class

and is called whenever a prediction is available. For a switch that has a state either on or off, instead of using
the observed state, which can lead to unstable behaviors, a debouncer algorithm is usually implemented with a
counter and sliding window: only when the observed value of the switch is in a certain state for the pre-defined
duration, will the digital system register a button press [37]. For example, debouncer approaches are commonly
used for electrical buttons (e.g. a key on a keyboard). Buttons implemented with contact switches have the
tendency to impulse signals in the time domain making it unclear for the digital system to determine if the
button is pressed. Our algorithm takes in thirty probabilities values given by the neural network at each frame; it
checks if any of the probability passes a pre-defined threshold; for those that do, it increments the frame counters
for those classes. When the frame counter of any gesture passes a frame threshold, IndexPen fires to the input
interface that this character associated with the counter is written. This would be equivalent to pressing this key
on a physical keyboard. After a key is fired, we reset the counter and continue the process.

The pseudo-code for the detection pipeline, with debouncing, is in Algorithm 1, which runs whenever a new
radar frame becomes available. For similar gestures, the probability of an incorrect character may reach the
debouncerProbThreshold, but the debouncer prevents the incorrect classification by requiring the probability to
remain above the threshold for a number of frames (debouncerFrameThreshold). For example, we set the constant
debouncerProbThreshold to 0.7 and the constant debouncerFrameThreshold to 50 frames. This means that the
algorithm will narrow down the correct gesture when the probability remains above 70% for 50 frames, which is
approximately 1.7 seconds. The total time may vary, depending on the values of these constants as well as the
gesture and the user’s performance.
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5 STAGE I: TOWARD A PRELIMINARY PRE-TRAINED GESTURE DETECTION MODEL
To explore the feasibility and potential of IndexPen, we present a two-part study that builds a foundation for
future work on IndexPen. First, we show that we can build an accurate model of 30 gestures on a dataset collected
over 10 days, and explore variants of the modeling algorithm to determine the most robust model. We then
explore the extent to which a model can adapt to a new user and the amount of samples needed to do so. These
studies were approved by the WPI Institutional Review Board.

Fig. 9. This Figure shows the experiment setup for data collection and the user studies (Sections 5 and 6). The users were
instructed to put their hand at the same height (5cm) as the radar and keeps a distance of 3 cm away.

5.1 Part 1: Validating the IndexPen Classification Model on 30 Gestures
The goal in this part of the study was to collect a large dataset enabling the development and evaluation of a
pre-trained gesture detection model for IndexPen.

5.1.1 Participants. We recruited five participants (5 males), with an average age of 24, labeled as P1-1 to P1-5
(e.g. P1-2 refers to participant 2 in user study Stage I). P1-1 and P1-3 were familiar with IndexPen gesture before
the experiment and the other three participants had never been exposed to IndexPen. All participants reviewed
and signed an informed consent form prior to participating in the study. While the number of participants is
relatively small, the data was collected over 10-12 hours from each participant, enabling for a large dataset from
each person.

5.1.2 Data Collection. During the user study, the user was instructed to put the tip of their index finger and
thumb at approximately three centimeters from the radar, and at the same height as the center of the radar. This
way we maximize the angular resolution of the hand motion because it is at the center axis of the radar and as
close as position without touching the device. The setup is depicted in Figure 9. We also note that the placement
of the hand is not strictly enforced and is subject to individual discretion. We assume that minor displacement in
gesture location is advantageous in helping training a more robust recognition model. In general, a displacement
within 1-2 centimeters is tolerated.

The data collection for each participant happened over 11 different sessions, each lasting about one hour. The
first day was the training for writing gestures. For the next 10 sessions, each day contained 10 trials in which the
participant was instructed to write each of the 30 characters along with a noise sample twice with randomized
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Table 1. Stage 1 IndexPen overall validation accuracy across all character gestures and all users. The best accuracy without
clutter removal is only 3.4% lower than the model with clutter removal. However, referring to Figure 10, the training process
is much more stable with clutter removal.

Validation Accuracy
IndexPen Without Clutter Removal 0.924
IndexPen With Clutter Removal 0.959

order during a fixed interval. We define a sample as the data stream produced by the radar in the 4 second window
during which a specific character is written. Therefore, we collected 620 labeled samples from each participant
every day, and 20 samples from each of the 30 characters as well as noise samples.
In total, over the 10 sessions, we collected 6200 samples from each participant, with 200 samples per charac-

ter/class/subject. Each sample consists of 120 radar frames (4 𝑠𝑒𝑐 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 × 1
30𝑚𝑠

𝑓 𝑟𝑎𝑚𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑) made
of the range-doppler and range-azimuth-elevation profiles. Overall, this part of the study collected 3.72 million
frames (6200 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑝𝑒𝑟 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 × 120 𝑓 𝑟𝑎𝑚𝑒𝑠 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 × 5𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠) for both aforementioned radar profiles.

5.1.3 Classification Architecture and Variants. We shuffle and stratify split the 6200 samples for each character
from a different participant from different days. With this large dataset, we set the training and validation ratio
equal to 9:1, giving the model more generalizability while having 100 (20∗5) samples from each class in validation
set. In training the IndexPen network, we used the adaptive moment estimation (Adam) [5] optimizer with the
initial learning rate at 1𝑒 − 3 and decay of 1𝑒 − 5. According to the suggestion from [56], we set the batch size to
128. With early stopping call-back with the patience of 250 epochs, the network converged at 415 epochs. We
explored the difference in classification accuracy with and without clutter removal.

5.1.4 Results and Discussion. The overall validation accuracy across all characters with and without clutter
removal preprocessing is shown in Table 1 and the training history is shown in Figure 10. The best-performing
model for classifying the 31 classes is 95.89%, and the accuracy for each individual class is higher than 91%. This
high classification accuracy demonstrated the feasibility of our designed system as a text input system.

While there is not a large difference with and without the clutter removal, the large fluctuation for validation
accuracy and loss shows that the model can easily over-fit to unrelated components with small misalignment.
As shown in Figure 10, keeping all the settings the same, the loss and accuracy gain much higher stability after
adding the clutter removal algorithm as we discussed in Section 4.2.

The model described above was trained by 180 samples per class from each participant, and we observed the
writing style varies from user to user during the data collection. For example, participant 1-1 created the last
stroke for ’O’ downward while participant 1-2 created it with a forward movement. Additionally, the ’D’ for
participants who have a smaller hand could be very similar to the ’P’ from participants with larger hand size.
Thus, it is important to handle individual differences.

5.2 Part 2: Exploring User Adaptability with Transfer Learning
It took more than 10 hours to record 180 samples/class for the model above, which may be an unrealistic
requirement in a commercial product. In this section, we use the same dataset as in the previous section. However,
we apply the leave-one-out method to build a model on four users and see how well it performs on a new fifth
user, and also how much data from the new user is required for a robust model. We aim to reduce the number
of training samples required while keeping the classification accuracy at the same level. In addition, we were
interested in exploring the best strategy for transfer learning. Some prior work retrains the last dense layer
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Fig. 10. Training history of the complete IndexPen neural network architecture. The top row is the training history without
clutter-removal algorithm and the bottom two charts is the training history with clutter removal. Although the accuracy for
the model with clutter removal is only 3.4% higher than the one without clutter removal, comparing two variances, removing
the static noise increases the stability of the model as shown in the reduced variance.

only, which works well when there is high generalizability of the model. Other work has retrained all layers. We
explore both approaches below.

5.2.1 Methodology. We were interested in finding out how much calibration data we need for a new user with
an existing model and what method to use for the transfer learning. We left out one participant and trained the
model on the other four users’ data, keeping all the settings the same as in the last section.
To study the amount of required calibration data, we randomly sample 20 samples from each class from the

left out user and gradually increase the number of samples for transfer learning and use all the rest samples
(180 samples/class) for testing. Starting without feed-in samples, we increase the feed-in ratio by 10 percent
(2 samples/class) each step. In order to regularize the model with insufficient data and combat over-fitting, we
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decrease the learning rate to 4𝑒 − 5 and decay to 2𝑒 − 5. In addition, to reduce the variance from the random split,
we repeat this entire process 10 times and select different samples for transfer learning without repetition.

As discussed above, we tested two transfer learning strategies: 1) All Layers Trainable where we unfreeze all
network layers during transfer learning, and 2) Last Layers Trainable where we retrain the last dense layer only.
Both strategies are widely used [47, 64, 65] for different tasks, and [10] compared results from the two strategies
for text recognition with IndexPen.

5.2.2 Results and Discussion. The average validation accuracy for the five pre-trained models is 92.48%. We
compared the result from two different transfer learning approaches (All Layers Trainable and Last Layers
Trainable) and the result is shown in Figure 11. The second method shows a much higher learning curve with
the same number of samples for transfer learning. In general, with 20 training samples, All Layers Trainable
model outperforms the Last Layers Trainable model by 16.75%. Therefore, we argue that the feature space in the
pre-trained model is not general enough to interpret a new user’s writing style. The reason is that the writing
style for the same gesture could be very different between users. Training only the last layer is a constraint
on how much the model can adapt to a new user. Most spatial and temporal features are abstracted by the
convolutional and regression layers, which are not trainable in Last Layers Trainable settings.

Additionally, when all the layers are trainable during adaption training, a pre-train model is more susceptible
to being biased by the variance in the training data given. The vulnerability to between-user variance is shown
by that the error bar in All Layers Trainable is greater than Last Layers Trainable when feeding fewer samples.
Nevertheless, the accuracy converges towards the mean (has smaller error bar) when the model sees more training
samples for the same user. The mean accuracy of All Layers Trainable is larger than Last Layers Trainable because
the entire model was able to condition on the distribution of new users’ gestures.
The sharp accuracy drops we see when we validate the model on a new user motivate the need for a user-

specific calibration process. After applying transfer learning and increasing the number of samples for training
to help the model adapt to a new user’s writing style, the classification model achieves a relatively high accuracy.
The calibration using 20 samples/class increase the average accuracy across 5 participants from 65.58% to 87.55%.

The notch at 0.1 (2 samples/class) feed-in ratio is caused by over-fitting, and we discuss the possible solution
in Section 7.

Insufficient data is a common problem in many domains. Data collection often is time consuming and expensive
making the training process extremely difficult and biased. For example, building a brain model using an MRI
image [11] involves an expensive experiment setup and a high variance between participants, which increases
the number of required samples from the larger population. Transfer learning, as a solution to this problem,
mitigates the demand that the distribution of training data must be identical to the testing data and validation
data. Many recent works have demonstrated this hypothesis [44]. For example, [54] has been used as a transfer
learning baseline network [58] in image classification, object detection, segmentation, as well as gesture motion
detection [2], because the feature distribution in the pre-trained layers is similar to the corresponding problem.

5.3 Stage I Summary
In the first stage, we built the preliminary IndexPen model and explored some of the considerations. This model is
the foundation for Stage II described below.

6 STAGE II: TOWARD REAL-WORLD USE OF INDEXPEN
In the second stage, we conducted a multi-part study to bring IndexPen closer to real-world usage. Instead of
collecting data on one character at a time, we explored a real-world writing task, using sentences. We explored
transfer learning across a larger group of users. In addition, we explored the learning process of both the algorithm
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Fig. 11. Leave-one-out transfer learning across participant 1-1 to participant 1-5. The x axis represents the feed-in ratio of 20
samples/class and y axis shows the validation accuracy from all the rest samples from the leave-out participant. Each box
represent 10-fold transfer learning cross validation. Left : all layers trainable model. Right : only last layer trainable. Starting
with average accuracy equal to 65.58, all the layers trainable model achieves 87.55% average accuracy at with 20 feed in
samples across five participants while the last layer trainable model is 70.8% with the same condition.

and the participants over five sessions. Finally, we elicited suggestions and perceptions about the potential of
IndexPen for human-computer interaction.

Unlike recognizing static images such as signatures, gesture detection carries the additional complexity related
to the dynamics with which a subject moves his or her hand, or the mode of motion/gesturing. It is known that
this temporality of the features carries significant individuality [29] and raises the question: can a model obtained
from a group of users be adapted to new user groups? In Stage I, we showed our system can successfully classify
30 distinct gestures with high accuracy, and the transfer learning is capable to capture the writing variance
between individuals.

In this second stage, we present an investigation of the cross-user adaptability of the IndexPen gesture system.
We look at how our model performs on a new user’s data and whether we can improve the initial model by
calibrating to the new user. Moreover, we evaluate the user experience with a three-part survey: pre-experiment
screening, post-session interview, and real-world scenario survey. As in Stage I, this study was approved by the
WPI Institutional Review Board.

6.1 Participants
We recruited 16 participants (8 male, 8 female), with average age 22. None of the participants in this group had
been exposed to IndexPen before. Among them, one participant (P2-11) was left-handed where the pre-trained
model was on right-hand data only (Section 3.1) collected on right-handed people. This participant still learned
the gesture with his right hand. We label all the participants in this study as P2 − 𝑛 to distinguish the participant
from previous study. At the beginning of the study, all participants reviewed and signed an informed consent
form.

6.2 Procedure
During the experiment, participants were instructed to write sentences with the IndexPen gesture and receive
real-time feedback of the text they ’typed’ in a text box on the computer screen. Participants were asked to come
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to five sessions in total, on five different days. Each time they completed a session, the pre-trained model was
retrained to adapt to this user. The transferred model was used to make real-time inference when the user came
in the next time.

6.3 Experiment and Tasks
We developed three applications (Figures 20, 19, 21) for data collection, visualization, and real-time inference.
The detailed software implementation is in Appendix A.3.

This experiment followed the procedure shown in Figure 12. We prepared 50 pangrams - sentences that
contain all of the letters of the English alphabet. In each session, participants were instructed to write 10 different
pangrams in a text box. Each sentence contained 37 characters (gestures) on average. Since the sentences did not
contain some of IndexPen’s special characters including 𝐵𝑎𝑐𝑘𝑠𝑝𝑎𝑐𝑒 , 𝐸𝑛𝑡𝑒𝑟 , 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛, and 𝑁𝑜𝑖𝑠𝑒 , we changed
each sentence sample to:

𝑁𝑜𝑖𝑠𝑒 −𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 − 𝐵𝑎𝑐𝑘𝑠𝑝𝑎𝑐𝑒− < 𝐴𝑃𝑎𝑛𝑔𝑟𝑎𝑚𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > −𝐸𝑛𝑡𝑒𝑟 −𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑁𝑜𝑖𝑠𝑒

We added two 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 at the head and the tail of the sentences to simulate the user activating/deactivating
IndexPen at the beginning and the end of typing a sequence. We also put one random character in the input box,
so the user needed to perform some 𝐵𝑎𝑐𝑘𝑠𝑝𝑎𝑐𝑒 gestures to be cleared for writing the requested sentence. Similar
to the first session, the participant followed the instructions on the user interface, writing each gesture in a four-
second interval. Using a fixed interval simplified the labeling data for a specific gesture. The real-time inference
algorithm invoked a keyboard strike for each detected gesture, providing real-time feedback to participants. It
enabled the participants to see what the system inferred that they typed (correct or incorrect). The participants
were instructed to keep writing even when they made a mistake (i.e., writing F whereas they should write T or
forgetting how to write the gesture).

Fig. 12. The flowchart of the sessions in user study Stage II (Section 6). We started every participant with a pre-experiment
screening. Then the user went through five sessions. The real-time gesture detection model used in the first session was the
pre-trained model from Stage I (Section 5). After the first session, the model was transfer learned on data from the past
sessions of the same user (i.e., the model used in session 3 would be the pre-trained model retrained on this user’s data
collected through session 1-2). At the end of each session, the participant was given a post-session survey. After the last
session, the participants answered a real-world scenario survey about how they thought IndexPen could be incorporated into
existing hardware applications.

At the end of each session, we gave the user a post-session survey for them to reflect on their experience
with IndexPen so far. We conducted a semi-structured interview where we asked which gestures were the most
challenging and how much easier it was compared to the previous session.
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6.4 Performance Measures
To explore real-world use, we investigate the mistakes user made in real-time while interacting with the system,
the model accuracy in various settings, and how user experience changed as they learned more about IndexPen
and the model adapted to their gesture style. Namely, we utilize the following measures:
(1) Sentence Correctness: To explore the correctness of the sentence we measure string similarity during

real-time inference (RTI). To do this, we use the Levenshtein distance [19] between the requested sentence
and the sentence that the participant actually typed through IndexPen (the character sequence that the
model decoded).

(2) Incorrect Gestures: In all sessions, a researcher observed the participants and identified any incorrect
gestures, noting only those that are completely incorrect. Often the participant also realized that the gesture
was not correctly executed. These were noted both for exploring user performance and learning curve and
also for ensuring that the classification model was not trained on incorrect data labels.

(3) User Model Performance with Transfer Learning: After each session, when new data became available
for a user, we re-trained the pre-trained model from User Study I on a 80-20 train-test split. The user
calibration was evaluated by the transfer-learned model’s F1 score showing the accuracy of the re-trained
model on the test data for this user. We use the F1 score to evaluate the prediction accuracy because the
sentences that the participant wrote have a different number of samples for each gesture. We further
explore the variation in F1 score across different gestures.

(4) User experiencewe make a qualitative evaluation of the system based on the participants’ feedback before
and after the sessions. We examine each participant’s experience coupled with the previous two metrics.

6.5 Results and Discussion
Here we discuss the results of the second user study about the IndexPen’s user learnability and model adaptability
in more realistic settings.

6.5.1 Sentence Correctness. Each box in Figure 13 consists of ten similarity scores using the Levenshtein distance
from the ten different pangram sentences in that session. The triangle highlights the median value in the box
chart. We observe that that participant makes fewer mistakes after the second session and the sentences continue
to become increasingly correctly entered.

6.5.2 Incorrect Gestures: Incorrect gestures happened most frequently during the first session. Participants
on average made mistakes (writing errors) on 1.58% of the 37-letter long sentences; the percentage incorrect
is reduced to 0.31% for the sentences on the last session. It shows that the users gradually learned to create a
natural map between the gestures and the characters, enabling more fluent interaction.

6.5.3 User Model Performance with Transfer Learning. We present the average F1 score across characters for each
participant and the same metric across all participants for each gesture. We show how the accuracy evolved as
participants came in for each of the five sessions in Figure 16. We compare the results using a static pre-trained
model and that with transfer learning on the user-specific training data from each session.

As shown in Figure 14, the average F1 score for both the transfermodel and the original (static) pre-trainedmodel
are equal to 51.8% on the first session, because no user-specific data is available for transfer learning/calibration in
the first session. With transfer learning, the model’s accuracy increased to 88.3%(𝛿36.5%) by the last session. It is
interesting to note that the F1 score of the pre-trained model (without any re-training) also went up substantially
to 65.7%(𝛿13.9%). One hypothesis on the improvement of the F1 scores is that the users also learned to adapt to
the system over the five sessions, as they were able to see the detection result in real-time. While the model was
calibrating to the user with transfer learning, the users were also adjusting their gestures to get better results
from the system.
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Fig. 13. The string similarity from the real-time inference in the user study. Each box consists of ten similarity scores from
ten different pangram sentences.

6.5.4 Model Performance Variance between Different Gestures: Figure 16 presents the F1 curve for each individual
gesture across all users. Figure 15 shows the detailed accuracy for each letter and each participant in the last
session. (The detailed F1 scores for other sessions are in Appendix A.4)
It is interesting to note the gestures 𝑈 (𝛿𝐹1 = 54.0%), 𝐵𝑎𝑐𝑘𝑠𝑝𝑎𝑐𝑒 (𝛿𝐹1 = 51.0%), 𝑉 (𝛿𝐹1 = 51.0%) in the first

sessions. These gestures had the highest accuracy increases from session to session, indicating that there was
high variability in how each participant wrote these gestures. Towards the final session, the model was well
calibrated with transfer learning to cope with those individual differences in the mode of writing.𝑊 had the
highest accuracy (95.5%). It is one of the longer gestures involving the greatest number of strokes creating long
temporal features that make its classification easier.𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 started with high accuracy even in the first session
and ends high, increasing from 83.9% to 95.8%. This gesture includes a double tab which requires the least manual
dexterity with minimum variance between individuals. We noticed that the model incorrectly predicts all the
𝐹 gestures as a 𝑇 on the last session for P2-2 (There was a 10-day gap between session 4 and session 5). After
reviewing the video recording, we found that instead of keeping the thumb relatively stationary as in previous
sessions, P2-2 kept the index finger static and wiped the thumb downward for the first stroke in 𝐹 . The motion
of the thumb with respect to the index finger is correct; however, this motion with respect to radar is reversed.
Therefore, the 𝐹 and 𝑇 are very similar on the range profiles. We discovered the same problem for 𝐵𝑎𝑐𝑘𝑆𝑝𝑎𝑐𝑒
and 𝑆𝑝𝑎𝑐𝑒 . This variance also indicated the writing style changed over time [6].

6.5.5 User Experience and Performance. In this section, we present the analysis of the user experience with
analysis combining the post-session survey and the quantitative evaluation. We also cover the participants’
reflection on the most challenging gestures and their learning experience in the survey. In the final post-session
interview, most users noted a high improvement compared with the previous sessions, and the sentences becomes
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Fig. 14. The average F1 score from the raw sample between event markers across all the classes and participants over five
sessions. Left: average F1 score using the pre-trained model. Right: average F1 score from the transfer-learning model. We
separate the 16 participants into two different plots for better readability. The pre-trained model accuracy and the transfer
learning model accuracy start at the same level. However, the transfer learning resulted in significantly higher accuracy
towards the last session.

readable after the third session. Among the participants, participant P2-8, P2-7, P2-13 showed the highest
adaptation rate throughout the sessions. The average accuracy increments for those three participants are
(𝛿𝐹1 = 58.6%), (𝛿𝐹1 = 57.9%), and (𝛿𝐹1 = 43.9%) respectively.
Participant P2-15 made the following observation during the post-session survey at the final session, noting

how much improvement they had experienced since the first session.

"It’s frightening how accurate it is considering the measly five sessions of the experiment. The gesture
has also become more comfortable and a lot more accurate. When a wrong letter appears, it is very
easy to understand and analyze where the mistake might have come from. There is also a pattern of the
mistake appearing mostly in the middle of the test as the hand becomes more worn out. This seems to be
improved whenever a break is taken."
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Fig. 15. The F-1 score in session 5 for 31 classes for 16 participants with transfer learning. Ave on the Labels and Participants
are the average over all classes and participants. Other abbreviations are Spc-Space, Bspc-Backspace, Ent-Enter, Act-Activation,
Nois-Noise. The number at the right bottom corner is the overall average F-1 score 0.883.

Figure 14 also shows that participant P2-10 under-performs compared to the average, having a z-score of -3.34
at the last session for the transfer model. Despite the fact they made an interesting observation, “I think the easiest
way to learn is just imagine my thumb is a piece of paper and I am writing on it”, which aligns with the design idea
of IndexPen. In the post-session survey, this participant is the only user who noted that their hands were getting
sore from performing the gesture for a long period of time. This shows that more consideration of comfort and
ergonomics is essential. Fatigue could have a negative impact on the accuracy.

Additionally, we observed that P2-1 achieved the highest accuracy in the third session; however, the performance
dropped for the last two sessions. Similarly, we observed this dropping with other participants. (e.g., P2-1 (Session3-
Session4), P2-9 (Session2-Session3)). Because we scheduled the experiment around participants’ convenience, the
gap between each session varied from one day to three weeks. We found that in most of the sessions that had a
lower accuracy from the previous session, the participant was away for at least 1 week, and they usually required
the experimenter to remind them of some gestures. This finding indicated that the gesture style could change
over time within individuals, particularly with infrequent use [6].

According to the post session survey, there are two types of challenging gestures : complex/unnatural gestures
and confusing gestures. For the first category, 𝑌 , 𝐺 , and 𝑂 were mentioned 14, 12, and six times respectively by
different participants in different sessions. Those gestures either have complicated curves or unnatural movement.

P2-12 explained:
"It is like more movement and it is more trickier"

However, the difficulty is not an essential factor that influences accuracy. 𝑌 , as the most frequently mentioned
hard gesture, achieved 91.9% accuracy (9th highest accuracy over 30 gestures). In contrast, C was mentioned

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 79. Publication date: June 2022.



IndexPen: Two-Finger Text Input with Millimeter-Wave Radar • 79:27

Fig. 16. Average F-1 score across all participants for each character. For clearer visualization, we plot 5 gestures on each
sub-figure.

only once over the entire study, but it had the fourth lowest accuracy at the last session (79.0%). This is because
complex gestures usually have more features that are more distinguishable comparing with simple gestures.
𝐾 ,𝑍 , and 𝐹 , were mentioned 11, eight, and seven times. The most frequent reason was the direction is confusing.

During the first and second sessions, participant usually did them in reverse (i.e., do the F as a T.). This problem
has been referred to as as Mirror-image confusion, and principal axis reflection [17] and occurred more often than
all other error types in participants. P2-9 says:

"Some of them are harder because of their multiple strokes and their directions. I sometimes got confused
about the direction of the gestures, either from inner index finger or from the outer index finger."

This problem should be explored further to design the most understandable tutorial.
Fifteen out of sixteen users reported increasing ease and comfort using the IndexPen application as the model

continuously adapted to their gesture style and as the user learned to optimize the hand posture for best detection
result.

Fourteen participants reported having a hard time during the tutorial before the first session. The most common
problem, as we mentioned in 6.5.5, was doing the gestures in reverse. However, all the participants felt that it
became easy after the first session and the number of mistakes caused by writing error (not prediction) reduced
from 1.58% to 0.49% on the second session. The following feedback on the second session reflects the learning
curve:

P2-2:"Feels more comfortable and can follow those gesture very easily."
P2-5:"Easier to write and follow. Now I have time to look at the input box at the top"
P2-9:"I feel much more comfortable with writing the letters using my hands than the last time."

Four participants suggested that the learning curve may be impacted by experience playing an instrument
or similar activities requiring finger dexterity. In our experiment, eleven participants reported having engaged
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in activities that require finger dexterity. However, we did not find a strong correlation between the learning
curve and those activities. Excluding P2-10, the accuracy for the participants that did not report engaging in
finger dexterity activities (𝑃2 − 4, 5, 6, 8) had an accuracy of 51.4% in the first session and ended with 88.1% on
the last session, which is in line with the average across all participants However, the correlation between finger
dexterity activity and learning curve should be explored further on a larger population.

7 LIMITATIONS AND FUTURE WORK
The proposed IndexPen system achieved high accuracy across 30 gestures in addition to the noise class. However,
the calibration procedure still requires more than 20 samples per character to obtain a reasonably high accuracy
on a new user, and this is tedious for the end user. Further, additional people may introduce variance to the data
and the classification model. On the other hand, training on a larger group of users and capturing more of the
variability in the training set can lead to higher generalizability of the model. In addition, data augmentation
[53] can have similar effects by artificially creating additional training data based on the existing data, leading to
greater generalizability. Additionally, the gesture location could be an essential factor that affects accuracy. In
future work, we would like to experiment with how the gesture accuracy varies at different angles and distances
relative to the radar.

Given the successful classification of IndexPen text, we presume that similar gestures can be fitted to alphabets
in addition to, or in place of English, and possibly extend to characters from ideographic languages such as
Chinese and Japanese. We had participants who speak Spanish, French, Chinese, and Japanese. Participants
thought extending IndexPen to Spanish and French could be easy since the characters are overlapping. For
languages such as Chinese or Japanese, IndexPen could enable direct input of the characters, instead of requiring
phonetic alphabets which are often used for input on devices with Qwerty keyboards. A related future direction
is to include the numbers in the gesture space without compromising the discriminability of the existing gestures.
Care would have to be given to the gesture design of characters with similar strokes (e.g. number "1" with the
letter "I" and number "2" with the letter "z"). Applying a language model could help with differentiating similar
gestures by giving greater weight to characters that would be more likely, given the context of the previous string
of characters. This could also enable auto-correction and predictive writing, similar to what is found in the swipe
keyboard on smartphones and smartwatches [52]. The additional layer of cross-letter and cross-word processing
could improve the match ratio between what the user wants to write and what the system detects. It would be
worth investigating to what size an IndexPen gesture set could go before the accuracy would decline.

IndexPen also has the potential to be used as a touchless interface in real-world applications such as ticketing
machines, kiosk terminals, gas stations, elevator buttons, and medical settings for hygienic reasons. The gesture
alphabet could be reduced for these specific applications (i.e., only open-door, close-door, and floor numbers in
an elevator) and a higher precision would be expected from a smaller gesture set. P2-5 suggested that " this could
be helpful for blind people to interact with other devices." P2-15 suggested that "This could be useful in video games
to bring a more immersive experience. (Potentially VR)". These are a few areas where we could envision expanding
the concepts explored here with IndexPen.

8 CONCLUSION
This is the first paper to demonstrate the feasibility of a high accuracy radar-based interaction technique for
input of the entire English alphabet using 30 in-air, two-finger micro-gestures, designed to be easy to learn and
remember because it is based on everyday hand-writing. In addition to demonstrating high accuracy recognition
of more gestures than previous work (30 vs 11), our paradigm is based on fingertip-only gestures, using two
fingers, and does not involve full hand swipes or larger gestures. It is also not constrained to personal used like
the wearable devices; the system can potentially replace universal public input interfaces such as elevator buttons.
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The proof-of-concept demonstration and feasibility studies provide insight for future HCI using mmWave radar,
as it provides touch-free, private, familiar text input, that could extend to other languages.
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A APPENDIX

A.1 Confusion Matrix

Fig. 17. The validation confusion matrix from user study 1 (section 5). The gestures with similar signature have more likely
to be confused (i.e., between D & P, T & F).
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A.2 Ablation Study
Figure 18 shows the result from five ablation studies. Figure 18(𝑎) represents the loss and accuracy without the
dropout layer. The final test accuracy for without dropout layer is 95.5% which is similar to 95.6% for adding
dropout layers.

The final test accuracy for using only RD profile (without angular information from RAE) is 92.8%, compared
to 95.6% of using both. We also see a slightly larger generalization gap when using only RD, where the test
accuracy tilts upward as the epoch grows. Similarly, using only RAE (ignoring the information on the speed of
movement), training with early stopping gives an accuracy of 63.4%. The relatively poor performance indicates
that RD contains important information for decoding the gesture. At the same time, RAE can supplement the
classification but is not sufficient as the sole feature for the model.

In the fourth and fifth ablation study, we justify our approach in creating separate convolutional layers for RD
and RAE by showing the contrary: we assume that RD and RAE have the same probability prior, to be learned by
the same convolution layers. With it, we combine RD and RAE along the horizontal axis (horizontal axis is the
velocity in RD profile and RAE, it is azimuth and elevation) with input size to the network equal to (8, 16 + 64, 1).
Similarly, we combine RD and RAE along the vertical axis (vertical axis is the range for both RD and RAE, see
figure 4 and 5). We resize the RD from (8, 16, 1) to (8, 64, 1) and the input dimension is (8, 64, 2). In both cases,
the test losses and accuracies are not stable, showing that RAE and RD have different spatial distributions that
need to be optimized independently during training.

A.3 Experiment Software
We created three applications (Figures 20, 21, and 19) to enable the user study. Figure 20 is the data recording
interface that captures video stream, radar image stream, and event marker from stimulus presentation software
19 with synchronized timestamps.

We present the real-time text input box and instruction images to the user during the study as shown in Figure
19. The displayed image includes the gesture that the participant needs to write as well as the instruction shown
in blue lines. The green dot is the starting position of the index finger on the thumb and the path is labeled with
indexes. The progress bar shows the remaining time for that gesture, and participants were instructed to finish
writing that gesture during this fixed interval (four seconds in our experiment).

The real-time inference application in Figure 21 receives the radar stream from the recording application and
returns the predictions. The raw radar profiles and the profiles after clutter removal are shown on the top. The
model takes clutter-free profiles for prediction and returns the temporal probability evolution as well as the
instantaneous probability from predictions on the visualization panel on the left. We implemented the debouncing
algorithm from Section 4.4 based on the prediction result to invoke keystrokes. Participants can adjust their
writing style according to the temporal probability evolution graph between sentences for higher accuracy.

A.4 F-1 Score for Each Session
The gesture accuracy for each session is shown in Figure 22, 23,24, 25, and 15.
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Fig. 18. The ablation study results. (a): Without Dropout Layer (b) Use RD as the only input to the neural network with
clutter removal. (c) Use RAE as the only input to the neural network as the only input. (d): Stack RA and RAE along width
axis and use the combined image as a single input to the network. (e) Up-sample RD from (8,16) to (8,64) and stack RD and
RAE along depth axis.
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Fig. 19. A example participant was writing "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG". Participants were
instructed to perform the given gesture before the progress bar ends (four seconds). The text input shows the real-time
inference result. The green dot on the gesture image indicates the starting position of index finger on thumb and the paths
are labeled in numbers and arrows.

Fig. 20. The recording application that synchronize the video recording (on the left), radar profiles (in the middle), and event
marker (on the right) that encoded into 31 integers between 1-31 from stimulation presentation software in Figure 19.
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Fig. 21. Real-time inference application receives the radar profile streams from data recording application from Figure 20
and is processed with clutter removal algorithm. The visualization shows the temporal probability evolution and profile maps
before and after clutter removal. The bar chart shows the instantaneous probability at that moment.

Fig. 22. User study first session gestures F1 score for each gesture for each participant.
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Fig. 23. User study second session gestures F1 score for each gesture for each participant.

Fig. 24. User study third session gestures F1 score for each gesture for each participant.
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Fig. 25. User study fourth session gestures F1 score for each gesture for each participant.
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