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In this paper, we introduce IndexPen, a novel interaction technique for text input through two-finger in-air micro-gestures,
enabling touch-free, effortless, tracking-based interaction, designed to mirror real-world writing. Our system is based on
millimeter-wave radar sensing, and does not require instrumentation on the user. IndexPen can successfully identify 30
distinct gestures, representing the letters A-Z, as well as Space, Backspace, Enter, and a special Activation gesture to prevent
unintentional input. Additionally, we include a noise class to differentiate gesture and non-gesture noise. We present our
system design, including the radio frequency (RF) processing pipeline, classification model, and real-time detection algorithms.
We further demonstrate our proof-of-concept system with data collected over ten days with five participants yielding 95.89%
cross-validation accuracy on 31 classes (including noise). Moreover, we explore the learnability and adaptability of our system
for real-world text input with 16 participants who are first-time users to IndexPen over five sessions. After each session, the
pre-trained model from the previous five-user study is calibrated on the data collected so far for a new user through transfer
learning. The F-1 score showed an average increase of 9.14% per session with the calibration, reaching an average of 88.3% on
the last session across the 16 users. Meanwhile, we show that the users can type sentences with IndexPen at 86.2% accuracy,
measured by string similarity. This work builds a foundation and vision for future interaction interfaces that could be enabled
with this paradigm.
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Fig. 1. IndexPen enables in-air two-finger text input on devices with limited physical size and no instrumentation required
to be worn on the hand. For example, it could provide a contact-free typing interface on public devices such as ATMs to
improve hygiene. It provides an alternative to typing on a small screen where typing is challenging and voice input is not
appropriate or feasible. IndexPen recognizes gestures akin to handwriting including 30 classes. The system processes the
speed and angular profile generated by a miniature radar device and uses neural networks to detect the gestures.

1 INTRODUCTION

Recent work has shown that millimeter-wave (mmWave) radar sensors, which are becoming viable in a small form
factor, can track finger motion in a 3-dimensional space, opening new doors for human-computer interaction. In
particular, this technology could allow for gesture recognition as input to systems, when other modalities are
not practical (Figure 1). For example, providing text input on a smartwatch is challenging due to the small size,
and voice input is not always convenient or appropriate in certain contexts. In addition, radar-based input has
potential to work through materials, so it could enable simple input without requiring a device to be taken out
of a pocket. Further, because it is touch-free, it could provide more hygienic interactions in public spaces and
medical settings.

With the recent integration of radar sensors into commercial mobile devices (e.g. Google’s Pixel 4), we envision
an increasing use of such sensors in new contexts. To realize this potential, there are several technical challenges
that must be overcome and considerations that are specific to radar-based user interfaces. Most previous work
using radar sensors only support a limited vocabulary [3, 55, 61], and do not fully exploit the complex features
available from mmWave radars.

In this paper, we make a systems contribution showing a novel prototype that supports text entry and has
the potential to work in ubiquitous settings, which is important in wearable interaction, augmented and virtual
reality, and other reality-based interaction paradigms [23]. IndexPen takes advantage of mmWave radar to
recognize micro-gestures performed with two fingers as the sole mode of interaction, and without requiring any
instrumentation on the user. IndexPen is aimed at extending desktop interaction experiences to smaller devices
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with limited processing power. The proof-of-concept system demonstrates novel human-computer interaction
that goes beyond existing mmWave radar user interfaces.
Our main contributions are as follows:

(1) We present the design and functionality eidexPenwhich enables users to input text by writing the
English alphabet with the index nger on the face of the thumb. It is intended to reproduce the feeling of
writing with tangible instruments. To achieve an acceptable typing experience and combat the static noise,
the gesture set includes 30 distinct symbols (26 letters and additional utility characters inclsgiace
backspagenter activatior). Theactivationgesture is designed to activate and deactivate lihedexPerand
avoid unintended input, and we also includmisedata to di erentiate the gestures and static noise.

(2) We detail the real-time processing pipeline we have developed to suppoftitiexPemteraction paradigms.

It utilizes two major feature sets from mmWave radar. The model takes these features as mixed input and
uses convolutional recurrent neural networks (CRNN) to resolve what gesture is being performed. The
predicted probability from the neural networks is processed with a debouncing algorithm to yield keyboard-
like character input. We also report experiment results with a clutter removal algorithm which signi cantly
increases the robustness of the model and shows thatltiteexPerapproach is able to distinguish 30
IndexPesymbols with a high 10-fold cross-validation accuracy of 95.89% over 31,000 gesture samples.

(3) We investigate considerations for practical real-world usagelrdexPemwith new users writing full
sentences. We demonstrate the generalizabilityrafexPeito new users through a series of experiment
with user-speci ¢ calibration based on transfer learning. After adapting to new users' writing with 20
samples per class in the leave-one-out experiment, the model achieved 87.55% accuracy across ve users.
We further investigate the learnability of designed gestures and the robustness dhtfexPempipeline in
real-world text input scenario with 16 participants over ve sessions on separate days and collect their
suggestions and feedback fordexPerthrough the experiment process. We analyzed both factors through
objective quantitative results and subjective participant feedback, providing valuable analytical results to
other researchers in gesture motion detection area. The average F-1 score across over all participants and
the average string similarity 19 in the last session is 0.8815 and 0.8619. Our work addressed the unde ned
variance between individuals [55] in gesture motion detection.

We also share our compiled data, including the video recording for participants' hands, and the source code
for the radar rmware and the data collection software, and the script that processes the data and provides the
evaluation results. Additionally, the instruction software (Figure 19), data recording interface (Figure 20), and
real-time inference interface (Figure 21) can extend to other HCI studies and bene t the community. The detailed
description can be found in Appendix A3

2 RELATED WORK

Our work builds on previous work on micro-gesture recognition as well as on radar-based user interfaces. We
provide background on these in the sections below. We also discuss the broader category of radio frequency-based
signals that can be used in HCI.

2.1 Micro-gestures in HCI

With the increase in micro-gestures in HCI, there have been numerous types of gestures proposed. To gain
insight into end-user preferences, Chan et & §onducted a user elicitation study of single-hand micro-gestures,
and we refer the reader to this paper for an in-depth exploration. Their study identi ed four main categories of
micro-gesturestap, swipe draw, andcircle They also found that out of the foutapsand swipesvere the most
commonly used by end-users.

Ihttps://github.com/ApocalyVec/IndexPenDemo
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The Drawwas not frequently used by end-users but is the basis oflthgexPeinteraction we present. Because
we propose an alphabet resembling handwriting, the draw gestures can be easily remembered, which may have
been an issue for othadraw gestures. Due to the fact that the thumb can comfortably reach the other parts of
the hand, Chat et al. found that the thumb was used more frequently in general, and was used on all the elicited
swipe gestures performed by the participants [7].IlmdexPeywe combine the thumb and the index nger.

2.2 Form Factors for Enabling Microgestures

Di erent form factors for enabling micro-gestures in the hand have been explored. These can be categorized by
whether they take an on-body or an in-air approach.

2.2.1 On-bodyOn-body devices have been proposed for micro-gesture detection of the hand as they can capture
physical or physiological data well through direct contact with the user's sKiipText[66] is a miniature QWERTY
keyboard broken into a grid with several letters in each section. The physical device is a conductive exible
printed circuit wrapped around the tip of the index nger, sensitive to touch. By clicking the tip of the index
nger with the thumb, users can select a grid section and the speci c letter within that section is disambiguated
using a language model. Bene ting from the small siZépTexthas the potential to be integrated with watches

and smartphones. Electromyography (EMG), which senses muscle activation during motor movements of the
hand and ngers, provides another way to detect gestures by directly decoding the muscle actisties]].

EMG sensors are usually taped to the skin to receive a direct reading of the electrical elds. Unlike mmWave
sensing, the user is required to have application-speci ¢ sensors attached to their body. When the sensor is
mounted to areas such as the tips of the ngers, it can hinder the user's ability to perform other tasks such as
typing. Force-sensitive resistors were usedihistFlexto successfully recognize subtle nger pinch gestures
[13. FingerPad8] has the most similar interaction properties tmdexPemut uses two nail-mounted devices

that detect magnetic eld intensities and transforms that to coordinates for a user interface.

2.2.2 In-airCompared to on-body methods, in-air approaches, sucmdsexPenfor gesture detection may be
more favorable as they do not require the user to attach any electronics to the body. This removes some of the
device-speci c constraints and can present advantages on aspects of sanitation, aesthetics, and utility.

For micro-gesture detection, many optical methods are used to extract the features of the user. A 3-D time-
of- ight (ToF) camera Rg has been used to simplify segmentation between the hand and arm. In using a
time-of- ight camera, the depth features are included to distinguish certain gestures. Some gestures may have
the same projections if captured by a 2D camera. Depth information has the advantage of providing another
rich set of features about the distance between the sensor and the parts of the hand while gesturing. However,
the ToF camera has disadvantages comparing to 2D camera and that is its low spatial resolution. Decoding
ne nger movements often requires millimeter-level accuracy at close ran@é]| which is hard for the ToF
camera to identify dynamics at these small scales. Marin et al. demonstrated the e ectiveness of using the Kinect
camera in human body recognitiorBF. They rst extracted the gestures from the acquired depth and color data
and then two di erent types of features were computed from the 3D points corresponding to the hand. They
also explored Leap Motion's optical method and reported that it di ers from the depth camera which returns a
complete depth map. The LeapMotion provides a higher level but more limited data description while Kinect
provides the full depth map. LeapMotion provides the coordinates of the major joints of the haé@isHowever,
as a camera based approach, the LeapMotion uses approximation when the nger ove2@psipking it harder
to discriminate micro- nger gestures as their design often involves touching between ngés 1, 66. On the
other hand, the velocity information obtained by mmWave sensors can be advantageous in this case as it shows
the ne dynamics of the ngers moving at di erent speeds [22].
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In addition to camera-based 3D tracking, magnetic sensi®¥j@[lows precise multiple ngertip tracking. It
requires users to attach electromagnet on the tracking target. SkinTracktfeats the skin on the arm as a
2D touch surface that can detect hover and touch events. It is enabled by an RF pulse emitter attached to the
gesturing nger and an electrode band worn on the wrist. By contrast, mmWave radar sensing does not require
any additional equipment on user's body, making it possible to be used as a universal input modality such as an
elevator button or on ATM.

Larger gestures have also been explored in air, without instrumentation. Researchers have explored mouse
control via nose or head gesture$, 60, in ubiquitous settings without on-body sensors. These systems has
lower resolution since they are based on the movement of the head, and also can be inconvenient in some settings.
Other hands-based in-air input methods leverage large-scale gestures and cannot reach high input resolution
because individuals may move their hands in di erent ways [1].

2.3 Enabling Interactions with Millimeter-Wave Radar and Other Radio Frequency Cloud Data

With IndexPeywe aim to capture in-air micro-gestures and control the coordinates in a mobile device accurately
and conveniently. To do this, we use millimeter-wave radar, which is one type of radio frequency (RF) information
that is increasingly available for human-computer interaction applicatiodg][ Radio-frequency (RF) data from
existing infrastructure (e.g. WiFi, Radio-frequency identi cation (RFID), unmodi ed global system for mobile
communications (GSM)) have been explored to recognize human activi2ié$§, locations b9, and gestures

[38 46 71, 77. This is accelerating as 5G standards emerge, with devices possessing increased speed, reduced
latency, and increased energy e ciency, and lower cost [42].

Millimeter-wave radar's frequency-modulated continuous-wave (FMCW) transmits a continuous wave modu-
lated in a frequency range, capturing spatial and temporal information of objects. The data pro le has a high
signal frequency and established processing pipeliri3 22, 31, 32 49, 55 68, making possible sub-millimeter
accuracy. In addition, its compact size, low computational cost, and low monetary cost have led to increased
interest and investment [3, 22, 31].

Unlike WiFi-based gesture applications, mmWave radar is a miniature portable device and is not constrained
by the location of the xed infrastructure (e.g., WiFi router). Having higher spatial and temporal resolutitsh [
mmWave sensors can go beyond detecting large-scale gestures (WiFi and camera-based) to sense micro-gestures.
Moreover, unlike computer-vision approaches to gesture recognition, radar user interfaces are not impacted by
ambient light [39, do not require line of sight 26 63 and are only marginally a ected by temperature comparing
to infrared sensing 1. In addition, radar information contains dynamic pro les that re ect the distance, angle,
and velocity of objects, which can be used for robust gesture detection, with shallower processing pipelines
[6]]. Despite the promise of mmWave for interaction, there are some limitatio®dd.[mmWave radars lack
spatial resolution compared to capacitive or optical sensors, making it hard to distinguish similar gestures when
moving ngers reside in close proximity with each other. Further, unlike camera image data, radar data can vary
across di erent platforms in their size and resolution, which calls for domain-speci c models. Real-time gesture
recognition can also be di cult due to the high throughput, requiring solutions with less complex processing
pipelines, often sacri cing some accuracy. Finally, because the features are unique compared to other sensing
technologies, it is not trivial to adapt existing pre-processing and prediction methods. The lack of distinct and
human-readable features also pose di culties in visualizing the data and creating better models.

With these considerations in mind, radar-based applications have been explored in diverse contexts. Object
detection has been shown with applications in automatic waste sorting, support for the visually impaired, and
medical usesf7]. In-car infotainment control has also been explored with radar-based user interfaggs [
Smart house control via mmWave sensing allows users to control indoor devices remotelgantomime
[43 demonstrated robust recognition of 21 mid-air gestures using mmWave radar in several di erent indoor
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environments. UnlikdndexPenvhich explores two- nger microgestures, these gestures were large hand and
arm motions. Other work has demonstrated a gesture recognition pipeline for mmWave data for cursor controls
[3] as well as the recognition of eleven gesturexl[ 55, resulting in the creation of post-processing algorithms
[18 32 49 to enable real-time interaction. Our work withndexPeigoes further to explore the classi cation of 31
classes. In addition, the design of thedexPemgestures facilitate the natural performance of the nger motions
that mimic the paper-and-pen writing experience. The composition of théexPeet is further explained in
Section 3.1.

2.4 Deep Learning in Interaction Technologies

Another challenge that novel sensing technologies pose is the complexity of data produced by the sensor. Unlike
the more mature classes of input devices such as traditional keyboard, mouse, or capacitive sensing, devices
utilizing electromagnetic waves propagated in space generate high dimensional data, both spatially and temporally
[16 30, 32 45 63. To overcome the challenges, researchers look to machine learning algorithms to interpret
the interaction. Among them, deep learning has shown much prominence lately through the use of neural
networks centered on image-based gesture systefnd]]. Recent development in radar-based systems have
started to explore this direction as the pro le from mmWave sensors can be interpreted graphically (see Section
4.1) B6 61, 6§. At the same time, past research applying deep learning in the image-processing realm have
shown that immense datasets are needed for building reliable systems. Even when a dataset is extensive given
the application, the models tend to su er from heavy over- tting, rendering the system unusable in practice
[40. Additionally, pre-trained models usually do not work well on new users], being over- tted to the user

group from whom the training samples are collected. Liu et 8J[take steps toward a user-independent system

by extracting the overall motion trajectory as a high-level feature to minimize the variance between users. The
algorithm calculates the centripetal movement energy and centrifugal movement energy for the entire motion.
The study demonstrated elevated robustness of the model for new users on ve gestures.

Other domains with highly complex and user-speci ¢ signals, such as brain-computer interfaces, have faced
similar challenges. Widely-used methods to improve the robustness and generalizability of the model are to add
weight penalties during training; it encourages the model to learn at every learning step, therefore stabilizing the
model's accuracy/loss on validation samplégl[69. The user-speci city issue can be mediated with transfer
learning, and real-time calibrationll4, 25. Some recent gesture-related work indeed leverage these techniques
[24. We later present a detailed analysis to show the e ectiveness of these methods in the rst and second parts
of the user studies in Sections 5 and 6.

3 INDEXPEN INTERACTION TECHNIQUE

IndexPe's gestures are all performed with a single hand, using the same hardware. In this section, we provide an
overview of the interaction model and the pipeline for radar signal processing.

3.1 IndexPen Overview

IndexPerenables text entry as gestures performed by the index nger writing on the face of the thumb. To
minimize additional training for the user, we aimed to create an input mode to re ect a person naturally writing
on a paper with a pencil. The movements of the ngers re ect the strokes of hand-written characters. This is
easy for the system to learn and recognize. We took inspiration from the Palm Pilot alphdBgtiThis writing

table was developed in the early days of handwriting recognition, and therefore the strokes are designed so that
they can be easily and correctly interpreted. However, the PalmPilot alphabet was designed for hand-held writing
pads and the features used are the pixel values.|lRdexPenthe features are based on the dynamic pro les
produced by mmWave radars.
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