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Introduction 
The promise of advanced autonomous capabilities in 
vehicles has potentially game-changing implications for 
drivers and passengers on the road. As the role of the 
driver in the system moves from direct control of the 
vehicle to a more supervisory role, the possibilities for 
in-vehicle experiences open, as do the safety implica-
tions. To enable appropriate adaptive behavior of the 
in-vehicle technology and autonomy mechanisms, we 
aim to understand the changing cognitive state of the 
driver through detection of natural physiological and 
brain signals occurring during driving. Through simula-
tor and on-road studies of drivers performing second-
ary tasks during driving, we have developed models to 
identify user cognitive state based on physiology, brain 
signals and driver metrics. Here, we focus on the inte-
gration of functional near-infrared spectroscopy brain 
sensing into our sensing platform and the steps so far 
to identify patterns related to cognitive workload. This 
work is a step towards real-time detection of the driv-
er’s changing cognitive state, which can be used to en-
able appropriate adaptive vehicle autonomy and adap-
tive user experiences. 

Background 
Previous research has considered measures of periph-
eral physiological signals such as heart rate, respiration 
and skin conductance [6] as a proxy for workload in the 
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vehicle. Recently, functional near-infrared spectroscopy 
(fNIRS) [2,13] has been used in human-computer in-
teraction research to assess signals from the central 
nervous system, in real-time, during tasks on a com-
puter [1,3,8,9,10] and in the vehicle [4,7,12]. 

Functional near-infrared spectroscopy (fNIRS) provides 
a measure of changes in oxygenated and deoxygenated 
blood in the cortex. Light of near-infrared wavelengths 
is sent into the brain where it scatters. The main ab-
sorber of this light is the oxygenated and deoxygenated 
hemoglobin in that area of the brain. A sensitive light 
detector can determine the intensity of the light that 
returns back to the surface of the head. This raw light 
intensity value can be used to calculate oxygenation in 
the blood, which reflects brain activity in that area. 

Because fNIRS measures cognitive activity more direct-
ly than peripheral physiology such as heart rate, it may 
offer complementary information to the other sensors. 
In addition, it may be more appropriate than other 
brain-sensing technologies because it is resilient to 
movement and noise artifacts [8]. Here, we integrated 
fNIRS measurement from the pre-frontal cortex, with 
other physiological and contextual sensors. By combin-
ing and contrasting these measures, we can assess 
whether fNIRS has promise as a method for driver 
monitoring and interaction during in-vehicle tasks. Spe-
cifically, we have investigated the sensitivity of fNIRS 
to working memory demands, using the n-back task.  

Experiment 
The goal of our study was to explore working memory 
demands that come from secondary tasks during driv-
ing. While there is a wide range of secondary tasks that 
a driver may perform, we used a variant of the n-back 

task, which has established capacity for eliciting scaled 
levels of working memory demand [5,11]. This task 
serves as a proxy for various secondary tasks that a 
driver may perform. Our experiments were conducted 
in a driving simulator equipped with fNIRS.  

Simulator Environment. The driving simulator consists 
of a fixed-base, full-cab Volkswagen New Beetle in front 
of an 8 × 8ft projection screen. Participants have an 
approximately 40-degree view of a virtual environment 
at a resolution of 1024 × 768 pixels. Graphical updates 
to the virtual world are computed by using Systems 
Technology Inc. STISIM Drive and STISIM Open Module 
based upon a driver’s interaction with the wheel, brake, 
and accelerator. Additional feedback to the driver is 
provided through the wheel’s force feedback system 
and auditory cues. Custom data acquisition software 
supports time-based triggering of visual and auditory 
stimuli and is used to present prerecorded instructions 
for the cognitive task. 

Brain and Body Sensing Setup. The fNIRS device was a 
multichannel frequency domain Imagent from ISS Inc. 
Two probes were placed on the forehead over the Fp1 
and Fp2 locations on the 10-20 International System 
for EEG placement. The source-detector distance was 3 
cm. Each source emits two near-infrared wavelengths 
(690 nm and 830 nm) to detect and differentiate be-
tween oxygenated and deoxygenated hemoglobin.  
Physiological data was obtained from a MEDAC Sys-
tem/3 instrumentation unit (NeuroDyne Medical Corpo-
ration). A modified lead II configuration was employed 
for electrocardiograph (ECG) recording in which the 
negative lead was placed just under the right clavicle 
(collar bone), ground just under the left clavicle, and 
the positive lead on the left side over the lower rib. 

 

 

Figure 1. Driving simulation environ-
ment (top). The participants sit in the 
car and are instrumented with fNIRS 
(bottom) and other physiological sensors 
(EKG, skin conductance). The screen in 
the front presents the simulated driving 
environment. 

 



 

Skin conductance was measured utilizing a constant 
current configuration and non-polarizing, low imped-
ance gold plated electrodes that allowed electrodermal 
recording without the use of conductive gel. Sensors 
were placed on the underside of the outer flange of the 
middle fingers of the non-dominant hand.  

Driving Task and Secondary task. The experiment fol-
lowed a protocol similar to that described in [5,11], but 
instead of on-road driving, the participants sat in a sta-
tionary car and drove in a simulated environment. 
While driving, they received auditory prompts to per-
form “n-back” tasks of varying difficulty levels. A series 
of single-digit numbers (0-9) were presented aurally in 
random order. The participant responded to each new 
number presentation by saying out loud the number n-
positions back in the sequence. Difficulty of the task 
increases as n increases. Each block also included a 
reference period in which participants were asked to 
‘just drive’. Participants completed three blocks sepa-
rated by a 90-second cool down. 

Preliminary Results 
Our analysis includes 19 participants (8 female) with an 
average age of 24.7 (SD=3.63). Participants performed 
well on the secondary task, with an average accuracy 
of 100% on the 0-back, 97.3% on the 1-back, and 
95.8% on 2-back. To look at the effect of difficulty and 
block for the heart rate, SCL, fNIRS and driving met-
rics, we conducted a factorial repeated-measure ANO-
VA. When Mauchly’s indicated violations of sphericity, 
the Greenhouse-Geisser correction was used. There 
was a significant main effect of difficulty on average 
HbR, F(2.453, 44.155)=3.919, p=.020. Contrasts re-
vealed that average HbR for blank-back F(1,18)=6.170, 
p=.023, 0-back F(1,18)=11.249, p=.004, 1-back 

F(1,18)= 6.893, p=.017, and 2-back 
F(1,18)=7.898,p=.012 all were significantly lower than 
the average HbR during single-task driving (Fig 4). 
There was no significant effects of block, nor was there 
a significant interaction effect of difficulty*block. Simi-
lar results were found looking at the min HbR values 
over the task period. There were no significant effects 
on avg HbO, avg HbT, max HbO, max HbT. There were 
significant main effects of both difficulty (p<.001) and 
block on heart rate (p=.002) as well as a significant 
interaction effect of difficulty * block (p<.001) (Fig 3). 
For the SCL measures, there was a significant main 
effect of difficulty (p=.029), but not block nor interac-
tion effect of difficulty * block. Steering wheel reversals 
showed a significant main effect from difficulty, but not 
block or any interaction effect. There was no significant 
effect on velocity. 

Discussion and Conclusions 
This study explores the feasibility of measuring fNIRS 
signals during driving tasks. We verified that fNIRS sig-
nals could be collected in a vehicle with simultaneous 
ECG and SCL measurements. We began looking at dif-
ferences in the physiological signals, brain signals, and 
driving metrics to understand how they change with 
increased working memory demands. Our initial results 
show similar changes in peripheral physiology and brain 
signals as demand increases. We continue to analyze 
this dataset to build robust models that take advantage 
of the complementary information coming from the 
brain, body, and driver activity. This builds on our prior 
work [11] building machine learning models to classify 
working memory demand from secondary tasks. By 
integrating brain data, we hope to uncover features in 
the signal to make our classifiers more robust. 
 

 

 

Figure 2. SCL sensor (top) and ECG 
sensors (middle, bottom) were applied 
before participants entered the vehi-
cle. 
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This research was motivated by the need to examine 
the working memory demands of new interfaces being 
introduced to vehicles and could be used during design 
stages of such interfaces. As vehicles become increas-
ingly intelligent and autonomous, it will be valuable to 
understand the real-time cognitive state of the driver 
so that the vehicle can adapt to be more responsive to 
the individual’s changing state. Future studies will ex-
pand this to more realistic tasks, and to real-time as-
sessment, as well as on-road assessment. 
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Figure 3. Average Heart Rate and Stand-
ard Error per Condition. 

 

Figure 4. Average Change in Deoxy-
hemoglobin and standard error. 



 

  

 


