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ABSTRACT 
This paper describes the Brainput system, which learns to 
identify brain activity patterns occurring during multitask-
ing. It provides a continuous, supplemental input stream to 
an interactive human-robot system, which uses this infor-
mation to modify its behavior to better support multitask-
ing. This paper demonstrates that we can use non-invasive 
methods to detect signals coming from the brain that users 
naturally and effortlessly generate while using a computer 
system. If used with care, this additional information can 
lead to systems that respond appropriately to changes in the 
user's state. Our experimental study shows that Brainput 
significantly improves several performance metrics, as well 
as the subjective NASA-Task Load Index scores in a dual-
task human-robot activity.  

Author Keywords 
fNIRS; near-infrared spectroscopy; multitasking; brain 
computer interface; human-robot interaction 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION 
When communicating with other people, we do not simply 
use words, but also accompanying visual and auditory cues 
that give the other person additional insight to our thoughts. 
At the same time, several physiological changes occur that 
may or may not be detected by the other person. When we 
communicate with computers, we also generate these addi-
tional signals, but the computer cannot sense such signals, 
and therefore completely ignores them. Detecting these 
signals and incorporating them into the user interface could 
improve the communication channel between the computer 
and the human with little additional effort required of the 
user. This communication improvement would lead to tech-
nology that is more supportive of the user’s changing cog-
nitive state. Such improvements in bandwidth are increas-

ingly valuable, as technology has become more powerful 
and pervasive, while our cognitive abilities have not im-
proved significantly. 

In particular, users increasingly are faced with numerous 
simultaneous demands and information overload. For ex-
ample, jobs such as air traffic inherently require multitask-
ing, despite human limitations in this ability. Moreover, the 
rapidly evolving field of human-robot interaction (HRI) has 
begun to require complex user interfaces, especially in con-
texts where human operators are working in teams with one 
or more autonomous robots.  

When the user is unable to handle multiple simultaneous 
demands, we observe high stress and performance degrada-
tion. To determine the proper way to support the user, it is 
critical to understand the different types of multitasking that 
may occur, as they do not all affect the user in the same 
way. Recognizing signals generated naturally by the user 
that differentiate different types of multitasking could lead 
to higher productivity, better task performance, and im-
proved experience when the signals are utilized to make the 
system responsive to users’ needs. 

Ideally, any sensing of the user’s changing cognitive state 
would be done automatically, in real time, with little incon-
venience to the user. Some researchers have approached 
this problem by monitoring performance data or interaction 
history (e.g. keystrokes) to assess the user’s current state, 
while others use computer vision to detect facial expres-
sions or other behavioral measures. Physiological measures 
are also emerging as continuous indicators of cognitive 
state changes [5, 17, 18]. Brain imaging and brain sensing 
techniques aim to get close to the source by looking at 
changes in brain activity during task performance [7, 10]. 
Currently, electroencephalography (EEG) and functional 
near-infrared spectroscopy (fNIRS) are the primary brain 
sensing methods that have potential for use in realistic HCI 
settings [28] due to low cost, easy setup, and portability. 

There have been early demonstrations that fNIRS signals 
could be sent in realtime from hardware to a user interface 
[3, 6]. Using fNIRS in a non-interactive situation, Solovey 
et al. [29] presented background experiments that showed 
that three specific cognitive multitasking states could be 
distinguished from each other. These results suggested that 
an interactive system that is aware of the user’s changing 
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cognitive state during multitasking would be possible, and 
parts of a feasibility demonstration were described.  

Here we present the full working system and an experi-
mental evaluation of its efficacy. We demonstrate that we 
can use non-invasive methods to detect signals coming 
from the brain that users naturally and effortlessly produce 
while using a computer system. Brainput learns to identify 
brain activity patterns occurring during multitasking. It then 
provides a continuous, supplemental input stream to an in-
teractive human-robot system, which uses this information 
to modify its behavior to better support multitasking.  

The contributions of this paper are as follows: 

1) A description and demonstration of a working system 
that uses fNIRS as a passive, implicit input channel to 
an interactive system; 

2) An evaluation experiment in which performance data 
shows improved performance using this input modality 
in a human-robot system; 

3) Evidence from subjective questionnaires showing that 
this input modality improved the users’ perceived 
workload and experience in the human-robot system. 

BACKGROUND AND RELATED WORK 

Passive, Implicit Input Channel 
Brainput was designed to be a passive, implicit and sup-
plementary input channel utilizing the multitasking state 
classification from the fNIRS brain signal. Other physiolog-
ical sensors have been similarly explored to identify aspects 
of the user’s state that can be useful in the context of the 
user interface. Of particular relevance are those that use the 
physiological data implicitly to augment other aspects of 
the system. In a gaming context, Nacke et al. found that 
indirect use of physiological signals was best for adapting 
dramatic effects such as environment variables [18]. Physi-
ological signals have also been used to automatically pause 
and bookmark an audio stream during an interruption [21]. 
These examples demonstrate some of the potential of pas-
sive, implicit, and supplemental input in various contexts. 

Until recently, most brain-computer interfaces were de-
signed for disabled users, and employed brain signals as the 
primary input [2, 13, 23, 25, 32]. While these systems pro-
vide this group of users with a valuable communication 
channel, they likely will not see wider adoption due to the 
low bandwidth compared to other available methods for 
non-disabled users. With lower costs for non-invasive brain 
sensing, we recently have seen a growing interest in em-
ploying brain sensors for a wider audience (for an over-
view, see [12]). Much of this work has also used brain sens-
ing as explicit input to the system to make selections or 
control the interface, (e.g. in a game context [15, 19] or 
with a multitouch table [33]), although there have been ex-
amples of passive brain sensing to be used either as implicit 
input or for evaluation of user interfaces [7, 10, 11, 16]. 
Girouard, Solovey and Jacob [6] brought offline analysis of 
fNIRS signals into a real-time system with the goal of using 
it to build passive brain-computer interfaces. Brainput goes 
beyond this work by improving the processing, training and 
classification algorithms, and building and evaluating a 
viable new input technique to improve the user performance 
and experience.  

Anterior Prefrontal Cortex and Multitasking 
While fNIRS has been applied to various locations on the 
head, the most successful placement is on the forehead 
(Figure 1) because of the absence of hair, which absorbs 
light and degrades the fNIRS signal. Thus, the anterior pre-
frontal cortex, which lies behind the forehead, is the main 
target for fNIRS brain sensing in this paper. This area of the 
brain is responsible for many high level processes and 
many activities can activate the area. Here, we look specifi-
cally at detecting brain activity changes during multitasking 
as we would like to improve user performance and experi-
ence in such difficult situations. 

Koechlin et al. [14] described three distinct but related mul-
titasking states and these form the basis of the work de-
scribed in this paper: 

1) Branching occurs when the user must “hold in mind 
goals while exploring and processing secondary goals” 
[14]. This is illustrated by the following scenario: A us-
er is tackling a complex programming task but is inter-
rupted by an incoming email from her boss that is time 
sensitive. Branching processes are triggered frequently 
in multitasking environments and pose a challenge to 
users. Automatically sensing this state is the focus in 
this paper. 

2) Delay Task occurs when secondary task is ignored and 
therefore requires little attentional resources. For ex-
ample, imagine that a user is tackling a complex pro-
gramming assignment and at the same time getting in-
stant messages that the user notices, but ignores. In 
this case, the secondary task does not require an atten-
tional shift, but instead simply delays the primary task. 

 

Figure 1. Brainput provides a passive, implicit input channel 
to interactive systems, with little effort from the user. 

 



3) Dual Task entails frequent task switching without the 
need to maintain information about the previous task 
(e.g. A user is monitoring and responding to high pri-
ority software support issues that are logged by clients 
as well as responding to important emails, and regu-
larly switches between the two tasks.)  

Using fMRI for brain imaging, Koechlin et al. demonstrated 
that these three multitasking activities had different signa-
tures in the anterior prefrontal cortex [14], the area that is 
best for measuring with fNIRS.  

Solovey et al. later showed that these states could be distin-
guished using fNIRS as well [29]. Figure 2 shows the mean 
and standard error of the fNIRS signal in branching (Blue), 
delay (Red) and dual task (Green) from that experiment. 
The mean is across ten trials of each multitasking activity 
for each of twelve subjects. The figures in top row show the 
pattern for oxygenated hemoglobin (Oxy-Hb) and the bot-
tom row shows the deoxygenated hemoglobin (Deoxy-Hb). 
These are the two measures that we get with fNIRS. The 
figures on the left are from the sensor on the left side of the 
head and the figures on the right are from the right side of 
the head. In addition, [29] showed that these cognitive 
states may be generic processes that occur in more than one 
domain. These results have direct implications for HCI as 
branching states would be prime candidates for triggering 
the support of an adaptive user interface. The analysis in 
[29] was done offline, after all of the data was collected. 
However, it shows promise that these signals could be dif-
ferentiated in realtime. 

This paper builds on these results by using the known mul-
titasking activities described by Koechlin et al. [14] and 
[29] as stimuli for creating individual sets of fNIRS training 
data during multitasking for each user. This training data is 

used to build a classification model for each individual that 
is used to later distinguish between multitasking states the 
user is experiencing during other tasks and activities. For a 
full description of the stimuli, please refer to [14] and [29], 
as we have identical stimuli which should stimulate branch-
ing, dual task, and delay task states in the user. 

Brain Sensing for Human-Robot Interaction 
Brain-computer interfaces (BCIs) have previously been 
incorporated into robot architectures, although these have 
typically been EEG-based systems (e.g., for controlling 
mobile robots [1, 4] or an intelligent wheelchair [22], 
among others). fNIRS provides advantages over the more 
prevalent EEG due to its easy setup and robustness to noise. 
Past research has proposed the use of fNIRS-based BCIs 
[20, 31]. However, these projects focus on using brain data 
for direct one-way control of robot movement, and are less 
concerned with the interaction between the human and ro-
bot. In addition, the reliability of such active control 
schemes will vary greatly depending on context, and may 
be particularly difficult to apply in high-stress or high-load 
contexts. By using fNIRS to passively identify an operator's 
cognitive state, we can exploit that very phenomenon 
to improve interaction efficiency. 

Augmenting active communication channels is particularly 
important in HRI, because people have a tendency to as-
cribe human-like abilities of comprehension to autonomous 
robots (possibly due to their apparent agency, or to their 
depiction in popular culture) that are, at this point, unrealis-
tic. Hence, any additional information that can help the ro-
bot to understand the operator's intentions will be of great 
value. 

BRAINPUT 
The Brainput system is made up of several components. 

 

Figure 2. Mean and standard error of fNIRS signal during 40-second trial in branching (Blue), delay (Red) and dual task 
(Green) from experiment reported in [29]. Mean is across ten trials of each multitasking activity for 12 subjects.  

 



First, the fNIRS data is processed by Boxy software from 
ISS, Inc. Two components of the Online Fnirs Analysis and 
Classification System (OFAC) [6] are used to get data from 
Boxy into a Matlab as well as markers indicating class la-
bels from Presentation software. A new engine for prepro-
cessing and training a machine learning model was built 
using Matlab and Weka [8] which sends classification re-
sults to the robot system continuously via sockets.  

EXPERIMENT 
To evaluate the effectiveness of using Brainput in an adap-
tive system, we created three adaptation schemes for com-
parison that are triggered by the brain input stream. Partici-
pants completed a robot navigation task three times, each 
employing a different adaptive behavior as a response to the 
brain input stream.  

Participants 
This study included eleven participants (three male), be-
tween the ages of 18 and 22 (mean 20.7). All participants 
were right-handed, had no history of brain injury and had 
normal or corrected-to-normal vision. Informed consent 
was obtained for all participants. This experiment was ap-
proved by our institutional review board. 

Equipment 
We used a multichannel frequency domain OxiplexTS from 
ISS Inc. (Champaign, IL) for fNIRS data acquisition. Two 
probes were placed on the forehead to measure the two 
hemispheres of the anterior prefrontal cortex (Figure 1). 
The source-detector distances were 1.5, 2, 2.5, and 3cm. 
Each distance measures a different depth in the cortex. Each 
source emits two near-infrared wavelengths (690 nm and 
830 nm) to detect and differentiate between oxygenated and 
deoxygenated hemoglobin. The sampling rate was 6.25 Hz. 

Training Phase 
Before working with the robot, each participant completed 
a training phase to gather fNIRS data in known multitask-
ing exercises. This data was used to build a machine learn-
ing model for classifying these cognitive multitasking 
states.  

We used the original multitasking exercises described by 
Koechlin et al. [14] as simple calibration tasks to elicit de-
lay, dual task and branching states. The exercises involved 
processing rules based on letters appearing on the screen. 
Each stimulus was either an uppercase or lowercase letter 
from the word “tablet.” The expected response from the 
user was different depending on the case of the letter, so 
switching between uppercase and lowercase letters would 
be similar to balancing two tasks. The rules for responding 
to the stimuli were designed to trigger branching, dual task, 
and delay. These are described in detail in [14]. By using 
known activities that induce known cognitive states, we can 
train a machine learning classifier to recognize these states 
later, in new contexts.  

Each run of the known multitasking activities lasted ap-
proximately forty seconds, and the fNIRS brain signal over 
this 40-second window became the training example. Once 
a machine learning model was built from this training data, 
the Brainput system continuously classified 40-second slic-
es of fNIRS data, in a sliding window that moved with each 
new sample. The sampling rate for the fNIRS system was 
6.25 Hz. For more details, see [30].  

Experimental Tasks 
The main task for the study is a multi-robot version of the 
task introduced in [27]. Participants remotely supervised 
two robots (the blue robot and the red robot) that were ex-
ploring different areas of a virtual environment. Participants 
were told that the two robots had collected information that 
needed to be transmitted back to the control center. The 
robots could help the participant search for an appropriate 
transmission location by measuring and reporting the signal 
strength in its current position. Transmissions were only 
possible in locations with signal strength of at least 2400 
(values ranged from 1300 to 2500, and the single target 
region in each robot's area covered roughly 1.25 % of the 
environment).The user had a console to view the environ-
ment from each robot’s point of view (Figure 3) and could 
issue commands to the robots such as “go straight,” or “turn 
right” (Figure 4) and the appropriate robot would follow the 
commands. They could also ask the robot for the signal 
strength of the current location by clicking “take a reading” 
and the robot would report the current signal strength. This 
required the robot to stop and also consumed resources so 
the robot could not be measuring signal strength at all 
times. In addition to the command interface, the red robot 
received cognitive load estimates from the fNIRS system. 

Participants were told that the task would last for five 
minutes and that the task was considered a failure if either 

 

Figure 3. 3D view from robots' perspectives in naviga-
tion task. The red robot's view is above the blue ro-
bot's view. 



robot did not find a transmission location in time. The ro-
bots moved continuously throughout each task run, except 
when (a) pausing to measure signal strength, (b) in a colli-
sion state with a wall or obstacle, or (c) at the target loca-
tion. Participants were instructed to avoid collisions with 
obstacles and walls, and were advised not to leave either 
robot idle, as it may go into a hibernation state to save pow-
er. These constraints helped to ensure that the participants 
engaged in multitasking between the two robot consoles 
and did not focus on finding one robot’s transmission point 
and then moving to the second.  

Conditions 
We compared our adaptive system with two alternate condi-
tions in the experiment. One condition simply turned off 
autonomy as a baseline. The other used the Brainput in-
versely to probe more deeply into whether the brain input 
had any effect, similar to the experimental design in Pope et 
al [24]. Thus, there were three conditions in the study, vary-
ing only in the adaptive behavior that was triggered in the 
red robot by the fNIRS brain input: 

1) In the adaptive condition—our system—the red robot 
went into autonomy mode whenever a branching state 
was detected—indicating that the user was tending to 
multiple tasks and maintaining information about the 
primary task over time. The red robot exited autonomy 
mode when a non-branching state was detected, requir-
ing the human to give instructions to the robot about 
where to explore.  

2) In the non-adaptive condition, the brain input was ig-
nored, and the red robot never acted autonomously. 

3) In the maladaptive condition, the rule was reversed from 
the adaptive condition. When a non-branching state was 
detected, the red robot began working autonomously 
and stopped when a branching state was detected, wait-
ing for commands from the participant. The autonomy 
mode provided the same assistance as in the adaptive 
condition, and thus should still allow the user to focus 
on the blue robot. The only difference is the timing of 
the onset of the autonomy mode. This condition allows 
us to investigate the effect of the mapping between 
Brainput and the adaptive behavior. 

In autonomy mode (regardless of which condition), the red 
robot would take over the search task, periodically sensing 
the signal strength and making appropriate course adjust-
ments to ensure progress toward the target location. Note, 
however, that even in autonomy mode the robot could be 
interrupted by the operator (e.g., when asked to take a read-
ing of the signal strength), but would return to the autono-
mous behavior after completing the requested action. 

The blue robot never acted autonomously, as we wanted to 
ensure that the human operator always had a task to per-
form. The red robot staying in autonomous mode through-
out the entire task would not be ideal as the human needs to 
be aware of the robot’s location and progress to provide 
corrective feedback (as the robot’s search behavior is 
not optimal), to ensure that the message is transmitted be-
fore time is up. 

Experimental Procedure 
Before the experiment, each participant completed a prac-
tice session without the fNIRS sensors, first with the robot 
navigation task and then with the multitasking exercises. 
This allowed the participants to familiarize themselves with 
each of the tasks. For the robot practice session, neither 
robot was autonomous as we simply wanted the participant 
to learn how to use the console and see the robot in action. 
In the multitasking practice exercises, the three distinct 
multitasking exercises (branching, dual task, and delay) 
were presented in a counterbalanced order. Each was re-
peated until the participant achieved greater than 80% accu-
racy in the task.  

After the practice sessions, fNIRS sensors were applied to 
the forehead and the machine learning training session be-
gan. The participant completed known multitasking exer-
cises to allow us to build an individual model of fNIRS 
activity for classification. The participant was presented 
with an initial rest screen, which was used to collect a one-
minute baseline measure of the brain activity at rest. After 
that, the user had to complete two sets of ten 40-second 
trials. There were ten trials of branching, five of delay and 
five of dual task, which were presented in random order. 
We wanted to be able to distinguish branching from other 
non-branching states. Between each trial, the user was pre-
sented with the instructions for the next trial, followed by a 
10-second rest screen. 

Once the training session was complete, the data was used 
to build a training set for a machine learning model. Any 
trial where the participant achieved lower than 70% accura-
cy was not used as this indicated that they were not actually 
performing the task. For the main experimental task, we 
were most interested in detecting branching states, as the 
workload level can be quite high with the demand from 
both context switching and working memory load. The dual 
task and delay trials were combined into one category for 
the machine learning model as non-branching. If the num-
ber of branching and nonbranching training examples were 
not equal, the smaller set was oversampled so that the clas-

 

Figure 4. Navigation controls for robot navigation task. 
There was a separate control for each of the robots, posi-
tioned to the left of the robot’s 3D view (Figure 3). 

 



ses were balanced. The machine learning model was built 
using Weka’s [8] SMO package for Support Vector Ma-
chines. For more details, see [30]. 

Once the model was built, the participant did one five-
minute session of the robot navigation task in each of the 
three conditions. After each session, the participant filled 
out a NASA Task Load Index questionnaire (NASA-TLX) 
to provide their subjective assessment of task load. The first 
five participants also provided voluntary additional com-
ments about their experience with each of the robots. To 
formalize this, the second set of six subjects also filled out a 
questionnaire on their perceptions of the robot in each of 
the three conditions. During the navigation tasks, the sys-
tem logged all commands issued, fNIRS multitasking clas-
sifications received, and events such as collisions with ob-
stacles. 

Design and Analysis 
The study used a within-subjects design. The independent 
variable is the robot’s adaptive condition: adaptive, non-
adaptive and maladaptive. All participants performed one 
five-minute session in each of the conditions. The condition 
order was counterbalanced. To evaluate whether the multi-
tasking state information was valuable in the navigation 
task and produced differences between the three conditions, 
we investigated the following dependent measures: NASA-
TLX questionnaire results, the robot perception question-
naire, and task performance from the log files, including 
number of completed tasks, number of commands issued, 
number of collisions, and maximum signal strength found.  

 

RESULTS 
Performance Results 
We examined several aspects of task performance to see 
how they were affected by the adaptive condition (Figure 
5).  

First, since the autonomy mode should help the participant 
find the transmission location, we expected that we may 
observe higher task completion in both the adaptive and 
maladaptive conditions, over the non-adaptive condition 
where the user always had to control both robots. For the 
blue robot, we did find this (5, 4, 3 participants, respective-
ly) but the result was not statistically significant. For the red 
robot, we did find a higher completion rate in the adaptive 
condition (9 out of 11 participants) than in the non-adaptive 
condition (5 out of 11 participants), as expected. However, 
the maladaptive condition had a lower completion rate (2 
out of 11) than both the adaptive and non-adaptive condi-
tions, indicating that the autonomy is helpful only when it is 
well-matched to the user’s cognitive state. With a Cochran's 
Q test, we found a significant difference among the three 
adaptive conditions (χ2(2) = 10.57, p < 0.01). A pairwise 
comparison using continuity-corrected McNemar's tests 
with Bonferroni correction revealed that significantly more 
participants completed the task in the adaptive condition 
than in the maladaptive condition (p<0.1, ϕ = 0.48). 

To get a more fine-grained look at task completion, we in-
vestigated the maximum signal strength found (Figure 5, 
top right). Since the main goal was to find a transmission 
point above 2400, this could give an indication of how 
close the participants came to completion. Nonparametric 
analysis was used since the Shapiro-Wilk normality test 

 

Figure 5. Performance results in relation to the two robots (blue and red) for the three adaptive conditions (adaptive, 
non-adaptive, and maladaptive). The top left figure shows the number of participants (out of 11 total) that completed 

each of the tasks. The other three figures show the means and standard error of the mean (SEM) for the maximum signal 
strength, number of collisions, and number of commands issued. 

 

 



showed that the data from each condition was not from a 
normal distribution. The adaptive condition resulted in the 
highest median for the maximum signal strength of the red 
robot (2416.0). The maladaptive condition resulted in the 
lowest median for the maximum signal strength of the red 
robot (2108.0). The non-adaptive condition was in the mid-
dle (2336.0). A Friedman nonparametric repeated measures 
ANOVA confirmed that the difference in the medians was 
statistically significant (p<0.001). Dunn’s multiple compar-
isons post-hoc test was conducted and showed a significant 
difference between the adaptive and maladaptive conditions 
(p<0.001). There was no statistically significant difference 
in the medians of the maximum signal strength of the blue 
robot across the three conditions. 

We then looked at the number of collisions in each of the 
conditions (Figure 5, bottom left). Participants were told to 
avoid collisions with walls and obstacles, as it would dam-
age the robot. This ensured that both robots were attended 
to throughout the tasks. The Shapiro-Wilk Normality Test 
showed that the data from each condition was not taken 
from a normal distribution. A Friedman nonparametric re-
peated measures ANOVA was performed to compare the 
medians. We did not find any statistically significant differ-
ence for the blue robot. However, for the red robot, we did 
find that the non-adaptive condition resulted in a higher 
number of collisions than the two adaptive conditions 
(p=0.005). Collisions during the non-adaptive condition 
may indicate a performance degradation in the participant 
since a non-autonomous robot would likely walk into a wall 
if ignored, since there was no way to pause or stop the robot 
from moving.  

Finally, as a measure of effort during the tasks, a repeated-
measures analysis of variance was carried out to determine 
whether the adaptive mode had any effect on the number of 
commands issued (Figure 5, bottom right). For the red ro-
bot, there was a statistically significant main effect of adap-
tive condition, F(2,20) = 3.691, p = 0.04, but post-hoc anal-
ysis did not reveal any statistically significant results. There 
was no statistically significant difference for the blue robot, 
F(2,20) = 1.153, p = 0.34. 

NASA-TLX Results 
The goal of implementing adaptive behavior is to decrease 
the user’s workload level. To investigate the success of this, 
we analyze the results of the NASA-TLX questionnaire [9]. 
This survey was designed to take into account individual 
differences in perceptions of workload. The questionnaire 
asks the participant to rate the workload level of the task in 
several categories. In addition, the user evaluates pairs of 
workload categories and indicates the one that contributes 
most to the workload. This is used to generate a set of 
weights that are applied to the other workload ratings and 
that reduce inter-subject variability. The means and stand-
ard error for the NASA-TLX scores from our study are 
shown in Figure 6. A repeated-measures analysis of vari-
ance on the NASA-TLX score showed that there was a sta-

tistically significant main effect of adaptive condi-
tion, F(2,20) = 4.65, p = 0.02. A Tukey's pairwise compari-
son revealed the significant differences between adaptive 
and maladaptive (p < 0.05). Each dimension of workload 
(mental demand, physical demand, temporal demand, per-
formance, effort, and frustration) was analyzed separately 
using Friedman’s non-parametric repeated measures 
ANOVA. The adaptive mode had a significant effect on 
performance (p<0.05) and frustration (p<0.05). 

Perceptions of Adaptive Behaviors 
The first five participants in the study provided informal 
comments about the robots and the different conditions. 
Many commented on the behavior of the red robot. For ex-
ample, after the adaptive condition, one participant said, 
“Although red robot occasionally disobeyed my commands, 
for the most part it was cooperative and found the transmis-
sion spot. Blue robot was still very cooperative.” The same 
participant had this comment after completing the maladap-
tive condition, “Blue robot was much more cooperative 
than the red robot, which frequently disobeyed my com-
mands and would go in its own direction.” From these 
comments, we can see that the participant found the red 
robot to be mostly helpful in the adaptive condition, but 
that it disobeyed in the maladaptive condition. To capture a 
clearer picture of the perceptions of the robots, we had the 
next six participants complete a questionnaire on their per-
ceptions of the robots. The results are illustrated in Figure 
7. 

This is a small sample of users, and so results of the ques-
tionnaire are preliminary. However, some patterns are be-
ginning to emerge. First, we see that the participants 
seemed to agree that in the maladaptive condition, the ro-
bots appeared to make their own decisions and that the ro-
bots appeared to disobey the user’s commands. There was 
less agreement on those points for the adaptive condition, 
even though the red robot was autonomous in this condition 
as well. This indicates that when the robot was autonomous 
at appropriate times (based on the branching classification 
from fNIRS), it was less noticeable to the user.  

 

Figure 6. Mean and standard error in NASA-TLX results. 
There was a statistically significant main effect of adaptive 

condition, F(2,20) = 4.65, p = 0.02. 

 

 



In the maladaptive condition, the participants indicated that 
the robots were more annoying than in the other conditions. 
This would make sense since they also felt that the robots 
were disobeying their commands. The lower score for “The 
robots were cooperative” in the maladaptive condition also 
corresponds with the other statements.  

It is interesting to note that the ratings did not show strong 
differences between the adaptive and the non-adaptive con-
ditions for these statements: “The robots acted like mem-
bers of the team,” The robots were annoying,” “The robots 
were capable,” and “The robots were cooperative.” This 
provides evidence that the user hardly noticed the adaptive 
behavior when it was consistent with the user’s needs. This 
is consistent with what we found in previous single-robot 
studies with both real and simulated robots [26]. 

DISCUSSION 
Overall, our results suggest that Brainput provided 
measureable benefits to the user, with little additional effort 
required of the user. This study also confirmed that we can 
train a machine learning classifier on a set of known tasks 
and later successfully classify brain activity in unrelated 
activities that elicit similar brain processes. 

The NASA-TLX results indicate that the adaptive condition 
had the lowest task load rating and the maladaptive condi-
tion had the highest, indicating that appropriate adaptive 
behavior helps to reduce workload, while adverse adapta-
tions can actually make the system perform worse. In addi-

tion, the completion rates and maximum signal strength for 
the red robot were highest in the adaptive condition and 
lowest in the maladaptive condition, indicating that the 
adaptive behavior triggered by the Brainput correlates to 
performance improvements. 

The red robot's autonomous behavior in both the adaptive 
and maladaptive conditions was appropriate: it made pro-
gress toward the target location. For this reason, our initial 
expectation was that task performance (in terms of number 
of successful task runs) would be improved in both adaptive 
conditions. As noted above, this was not the case for the 
maladaptive condition. This raises the question of how a 
properly functioning cooperative teammate could decrease 
performance. One likely explanation is hinted at by the 
number of commands issued in each condition. Participants 
issued more commands to the red robot in the maladaptive 
condition than in the other conditions, and the maladaptive 
condition is the only one in which the red robot re-
ceived more commands than the blue robot. It seems that 
subjects were less accepting of autonomous behavior occur-
ring during non-branching phases than during branching 
phases, and expended effort trying to "correct" the robot in 
that condition. This is reflected also in the subjec-
tive assessments: the robots were rated as more annoying 
and disobedient, and less helpful and cooperative in the 
maladaptive condition. These results demonstrate that bas-
ing the autonomy onset on the cognitive multitasking state 
has a positive impact on subjective task load. 

 
Figure 7. Preliminary results from robot perception questionnaire for the three conditions: adaptive (ADA), non-adaptive 
(NON) and maladaptive (MAL) (N=6). The scale was from 1 (strongly disagree) to 9 (strongly agree).  



As the name implies, the strategy adopted by the red robot 
in the maladaptive condition is not being proposed as a 
potentially viable candidate for future robotic architectures. 
Instead, the maladaptive condition is included to serve as a 
direct contrast to the adaptive condition, similar to the 
comparisons of positive and negative feedback loops in 
Pope et al. [24]. 

Comparing the adaptive and non-adaptive conditions 
demonstrates that robot autonomy can improve task per-
formance, but that is not surprising, having been shown in 
prior work (e.g., [26]). What is unclear, however, is wheth-
er the Brainput-initiated autonomy transitions correspond to 
meaningful cognitive state transitions in participants. Peri-
ods of autonomy might seem likely to be helpful in a task 
like this regardless of when they occur, so comparisons 
between the adaptive and non-adaptive conditions cannot, 
by themselves, support claims regarding the legitimacy of 
Brainput classifications. However, contrasting the adaptive 
and maladaptive results makes it immediately apparent 
that Brainput has successfully identified a distinction in 
cognitive states: if Brainput were not detecting a genuine 
difference in cognitive load, one would expect no differ-
ence between the adaptive and maladaptive conditions, and 
could attribute all of the performance benefits to 
the proportion of the time spent in autonomy mode. Instead, 
participants respond significantly differently to autonomy 
initiated when Brainput indicates a branching state than to 
autonomy initiated when Brainput indicates a non-
branching state. This constitutes strong evidence that 
the system is properly categorizing the fNIRS data—
Brainput implicitly provides information, distinguishing 
between times in which autonomous operation is beneficial, 
and those in which autonomous operation is detrimental to 
the task.  

FUTURE WORK 
Multitasking has become integral in many aspects of our 
lives, so there are opportunities to explore Brainput in other 
tasks and domains. In any activity involving multitasking or 
information overload, we could expect to see improvements 
in the user’s performance and experience. Some examples 
of other domains are complex data analytics, air traffic con-
trol and management of multiple unmanned vehicles.  

Evaluating the system's performance with larger groups of 
simulated robots will give some indication of how the BCI 
mechanism scales up and (since additional robots is likely 
to increase the "ambient" cognitive load) allow us to test the 
granularity at which we are able to categorize operator load; 
it may be that there are useful distinctions to be made even 
within the high-load category. Also, it is likely that interact-
ing with real, physical robots will lead to some differences 
in operators' overall cognitive states; evaluating Brainput 
with real robots will be important for determining its ap-
plicability to real-world problems.  

Finally, there may be other cognitive states that could be 
exploited to improve human-computer interaction efficien-

cy; an exploration of the system's ability to distinguish oth-
er states could, due to the passive approach to utilizing 
BCIs, lead to new enhancements at little to no cost to the 
operator. 

CONCLUSIONS 
Here, we take a different approach for brain-computer inter-
faces that augments traditional input devices such as the 
mouse and keyboard and that targets a wider group of users. 
We use brain sensor data as a passive, implicit input chan-
nel that expands the bandwidth between the human and 
computer by providing extra information about the user. 

We successfully integrated the Brainput system into a robot 
architecture and demonstrated that it can successfully be 
used to reduce human workload in interactions with multi-
ple robots. This is the first study to show the potential for 
fNIRS-based (as opposed to EEG-based) brain input 
in human-robot interaction. Moreover, the task used in this 
study is closely related to elements of many related real-
world scenarios, including military operations using un-
manned aerial vehicles for reconnaissance, search 
and rescue operations using robots to explore areas unsafe 
for humans, among others. In each of these scenarios, hu-
man operators must interact effectively with multiple robots 
in high-load, high-stress conditions in which the cost of 
failure is high.  

Brainput gives the interactive system a valuable additional 
information channel that can be used to improve team per-
formance without adding to the operator's load. 
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