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ABSTRACT 
Understanding the driver’s cognitive load is important for 
evaluating in-vehicle user interfaces. This paper describes 
experiments to assess machine learning classification algo-
rithms on their ability to automatically identify elevated 
cognitive workload levels in drivers, leading towards the 
development of robust tools for automobile user interface 
evaluation. We look at using both driver performance as 
well as physiological data. These measures can be collected 
in real-time and do not interfere with the primary task of 
driving the vehicle. We report classification accuracies of 
up to 90% for detecting elevated levels of cognitive load, 
and show that the inclusion of physiological data leads to 
higher classification accuracy than vehicle sensor data 
evaluated alone. Finally, we show results suggesting that 
models can be built to classify cognitive load across indi-
viduals, instead of building individual models for each per-
son. By collecting data from drivers in two large field stud-
ies on the highway (20 drivers and 99 drivers), this work 
extends prior work and demonstrates feasibility and poten-
tial of such measures for HCI research in vehicles. 

Author Keywords 
Cognitive workload; driving; physiological computing; 
heart rate; skin conductance; machine learning. 

ACM Classification Keywords 
H.5.2. Information interfaces and presentation (e.g., HCI): 
User Interfaces.  

INTRODUCTION 
In 2011, the U.S. National Highway Traffic Safety Admin-
istration reported that 3,331 people were killed and an esti-
mated 387,000 were injured on U.S. roadways in motor 
vehicle crashes involving distracted driving [26]. As a con-
sequence, technology usage in the vehicle is a major safety 
concern. A casual observation of drivers suggests that they 

increasingly attend to mobile devices and interact with new 
technology built in their vehicles, creating distracted driv-
ing scenarios. 

Driving itself is a dynamic, complex activity involving vis-
ual, cognitive and manual tasks: the driver has to form stra-
tegic goals, monitor the roadway environment and the vehi-
cle systems, process information and make tactical action 
plans as well as execute control level activities [23]. Thus, 
the driving task imposes varying levels of workload on the 
driver. Understanding the workload induced during driving 
is important for preventing accidents and hazards on the 
road, and human factors researchers have studied driver 
workload in depth. It has been shown that operators per-
form better at intermediate levels of workload compared to 
extreme levels (i.e. too low or too high workload) [8]. The 
roots of this are in the Yerkes Dodson law of arousal [41] 
(inverted U) that suggests that during periods of underload, 
added workload may improve performance, while during 
heightened demand, higher workload may reduce perfor-
mance. As they vie for driver attention, the workload im-
posed on the driver by in-vehicle user interfaces is constant-
ly changing. 
 
Advances in technology have led to a shift in the demands 
in many working environments from the largely physical to 
more supervisory oversight of automation, more cognitive 
demand, and increased frequency of vocal command inter-
action [34,42]. This development can be observed in the 
field of driving as well [16,37]. Modern cars provide driver 
support systems such as power steering, assistive cruise 
control and lane keeping assist, which decrease the physical 
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Figure 1. Recording of physiology during on-road driving. 
Electrocardiogram (top right) and skin conductance (bot-

tom right) sensor placement are shown. 
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demands of driving. The next generations of automated 
vehicles will likely partially, if not completely, relieve the 
driver of safety critical control. However, the increasing 
level of automation is expected to place more variable de-
mands on driver attention and cognitive activities. The 
complexity of in-vehicle interfaces will continue to increase 
at a rapid rate. Vehicles will likely contain more infotain-
ment options, and proposed automated driving systems will 
demand new interfaces. In addition, the increased autonomy 
of the car may provide the driver with a sense that they 
have the capacity to undertake additional tasks while driv-
ing. Understanding how the evolving vehicle interface af-
fects the driver’s cognitive load is critical for optimizing the 
user experience and safety during system design and 
through adaptive interfaces. This work aims to explore au-
tomatic detection of driver cognitive workload through 
physiology and vehicle data. 

Although mental workload is not directly observable [10], 
several measurement approaches to assessing mental work-
load are employed. Empirical measures are generally divid-
ed into three categories: subjective measures, performance 
measures and psychophysiological measures. Each method 
has advantages as well as disadvantages [19,43]. Subjective 
measures are cost-effective and suitable in prototype test-
ing; however they suffer from time delay, subjective biases 
and are highly intrusive which ultimately makes them un-
suitable for continuous workload assessment. Performance 
and psychophysiological measures can be measured non-
intrusively and continuously throughout the tasks [19].  

Recently, with sensing capabilities improving and costs 
decreasing, there has been a growing interest among auto-
motive vendors in enabling their products to monitor and 
exploit driver and vehicle sensor data. Driving measures of 
speed, acceleration, location and inter-vehicle distance are 
more readily available for inferring the current situation. In 
addition, cameras and other sensors are increasingly able to 
measure driver data such as heart rate, gaze direction and 
other physiological measures. These vehicle and physiolog-
ical measures provide the potential to monitor the dynamic 
state of the driver while actually driving and provide inputs 
to make adjustments in the characteristics of the vehicle or 
interfaces to improve performance [6]. 

Starting initially in a driving simulator [19] and moving to 
field studies [18,28,29], previous work demonstrated that 
vehicle sensor and physiological measures can both be col-
lected in real-time and do not interfere with the primary 
task, making them potentially valuable for evaluating work-
load associated with automotive user interfaces. This work 
was largely based on normative assessment of group level 
data. While a simple threshold based assessment showed 
promise for detecting changes in cognitive load at the indi-
vidual level [18], it remained to be shown how effectively 
this can be achieved using more advanced modeling.  

This paper builds from this prior work with the goal of im-
proving methods available for evaluating automotive user 
interfaces that may be used during driving tasks. It brings 
us closer to automatic cognitive workload classification and 

makes the following contributions. 1) We report machine 
learning classification results along with details of the tech-
niques and parameters for recognizing elevated cognitive 
load, based on data from a moderately sized and a large on-
road field study. 2) We compare the value of heart rate, skin 
conductance and driving data for classification. 3) We ex-
plore the differences between training classifiers within 
individuals and across individuals. By successfully training 
across individuals, we demonstrate the potential of building 
models that can generalize to work for new drivers. 

RELATED WORK 
The following sections provide background on peripheral 
physiological measures for workload detection in driving. 

Cognitive Load and Heart Rate and Skin Conductance 
Cardiovascular measures have been reported to be sensitive 
to mental workload changes (e.g. [5,12,25,38,39]). The 
heart is innervated by both parts of the autonomic nervous 
system: the sympathetic nervous system (SNS) and the par-
asympathetic nervous system (PNS). Heart rate (HR) and 
heart rate variability (HRV) are widely adopted mental 
workload measures because they are easy to use and pro-
vide fundamental information about the autonomic nervous 
system [3,25]. While the SNS activation promotes arousal 
(e.g. “flight-or-fight” response in emergency), the PNS is 
responsible for maintaining bodily functions and resting. 
Sympathetic activation increases heart rate while parasym-
pathetic activation decreases heart rate. 

Electrodermal activity (EDA) refers to the electrical activity 
from (eccrine) sweat glands and their associated dermal and 
epidermal tissues [4]. There are two types of sweat glands 
in the human skin: the eccrine and the apocrine. Though 
related, eccrine and apocrine sweat glands are distinct in 
size, structure, function, distribution and nervous control 
[31]. Eccrine sweat glands are under control of the SNS. 
Thus, physiological arousal affects the production of ionic 
sweat by eccrine sweat glands resulting in changes of elec-
trical resistance and conductance at the surface of the skin. 
EDA has been used as a measure for psychophysiological 
arousal for more than a century (e.g. [28]). EDA measures 
such as skin conductance level (SCL) and skin conductance 
response (SCR) have been reported to be sensitive to arous-
al and mental workload in driving as well [14,36]. SCL 
represents the overall tonic conductance level and SCR 
captures momentary (phasic) changes in electrical conduc-
tivity. This paper explores HR and SCL. 

Measuring Physiological Signals in the Car 
Literature on measuring physiological signals in the car can 
be divided into simulator studies [13,18,19,24,36] and field 
studies [14,15,18,28,30,33,40]. The major advantage of 
simulator studies is their relative ease of controlling exper-
imental variables and conditions. However, there are disad-
vantages compared to a field study as well, e.g. lower risk 
perception or simulator sickness. Since driver-vehicle inter-
faces eventually have to be effective and safe in real-world 
settings with dynamic environmental factors such as light-
ing or soundscape, this paper utilizes data from two field-
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studies to examine classification performance in a more 
realistic setting than a driving simulator. In addition, while 
most of these studies report significant normative differ-
ences in physiological signals during driving, this paper 
works to automatically detect these differences at an indi-
vidual level using machine learning. Below, we discuss 
some related field studies. 

De Waard et al. [40] studied 28 male participants driving an 
instrumented car on two different roads, each associated 
with a different demand level. The data suggests significant 
effects of road type on heart rate measures, but they did not 
look specifically at workload. 

Healey et al. [14] used physiological data (EKG, EMG, 
EDA, and respiration) from nine drivers in three real-world 
settings: rest, highway and urban. Three drivers accom-
plished seven drives each. Another six drivers completed 
one single drive. The three driving conditions were low 
(rest), medium (highway) or high (city) stress, respectively. 
This was validated through questionnaires. Using a linear 
discriminant function, an overall accuracy of 97.4% was 
reported for stress level classification. However, the gener-
alizability is limited since 21 of the 27 drive datasets are 
attributed to three drivers only (each one of these repeated 
the course on multiple days). 

In a larger study of 49 professional drivers, Jahn et al. [15] 
found heart rate to be sensitive to workload manipulation in 
their driving study. However, they conclude that the heart 
rate changes they observed reflect emotional strain or phys-
ical workload from steering actions as well. According to 
the authors, heart rate proved to be a sensitive but not selec-
tive measure for workload. In contrast, [25] claims HRV to 
be a selective measure for mental load. (See [22] for discus-
sion of HR vs. HRV in high workload detection.).  

The European HASTE study [8] produced mixed results on 
the relative sensitivity of heart rate and skin conductance in 
response to the demands surrogate secondary tasks in a 
sample of 24 drivers in the field. In contrast, Collet et al. [5] 
collected heart rate and skin resistance (inverse of SCL) 
data in 10 drivers on a closed driving track and found that 
both measures increased during secondary tasks requiring 
their attention (a phone conversation, a radio broadcast with 
content they would be quizzed on, and a conversation). 

Schneegaß, et al. [33] present a field study with ten partici-
pants in which they collected EKG, skin conductance, and 
skin temperature data while participants drove in road envi-
ronments presumed to induce differing levels of demand. 
This preliminary report only considered the skin conduct-
ance and skin temperature data, and found skin conductance 
for the group varied significantly across the road types and 
to be the more sensitive measure. 

The in-vehicle evaluation framework and two on-road field 
experiments described in this paper extend this previous 
work by collecting data from a significantly larger, gender-
balanced group of drivers across different age groups and 
looks at on-road responses to secondary task demands. 

CLASSIFYING DRIVER DATA FOR UI EVALUATION 
The related work in this area has generated interest from 
automotive companies for utilizing physiological and vehi-
cle sensor data in user interface evaluation. However, bring-
ing this research into the in-vehicle user evaluation is still a 
challenge, as there are few standard methods in place for 
doing so. We detail our procedure and results as a step to-
ward this. We employ machine learning techniques to learn 
a model for elevated workload based on physiological and 
vehicle data for automatic classification. This involves sev-
eral steps as shown in Figure 2. We describe each of the 
steps in more detail below, along with the potential choices 
that need to be made to conduct on-road user evaluations 
using these methods. Research questions are highlighted.  

First, there is a broad range of sensor technology available 
for on-road data acquisition, and more will be available in 
the future. In the studies described below, we investigate 
heart rate, skin conductance and vehicle telemetry because 
they have shown to be sensitive to changes in cognitive 
workload, and are relatively easy to measure during driving. 
We also assess their relative sensitivity to elevated cogni-
tive demand to determine the most effective sensors. As 
additional sensors are shown to be indicative of cognitive 
workload in the future, they could be added to this frame-
work. This leads to a research question addressed in this 
paper: Can peripheral physiological and driver perfor-
mance measures be used for accurate classification of ele-
vated levels of driver workload for interface evaluation? 

Raw sensor data is often not suitable for direct analysis due 
to various forms of artifact and errors. Often, the first step 
in data preprocessing involves a manual or automated 
cleaning of the input signals. In addition, some useful data 
features cannot be directly measured but have to be com-
puted first. The data pre-processing steps deal with such 
issues, but are often omitted in study descriptions. For each 
experiment below, we detail the pre-processing steps taken. 

Feature generation and feature selection convert the pre-
processed data into a set of values that could be used for 
learning a model for the various cognitive states. With sen-
sor data, the recorded measurements form a time series that 
could be used directly as a set of features. Also, some fea-
tures have to be extracted from raw data because they pro-
vide more information than the actual raw signal (e.g. heart 
rate is more informative than raw EKG). Other approaches 
aggregate the time series into summary functions such as 
the mean over a window. This reduces the dimensionality 
of the data. Previous work has shown that parameters such 

 

Figure 2. Steps required for on-road cognitive state classi-
fication for vehicle user interface evaluation. 
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as window size can have an impact on classification results 
in EEG data [11]. Understanding how these factors influ-
ence classification of other physiological and vehicle data 
will be addressed in the experiments below in order to an-
swer the question: How is classification accuracy affected 
by feature generation and selection parameters?  

With a set of features, we can employ machine learning 
techniques to train a classifier for detecting the cognitive 
workload of the driver, based on data previously acquired. 
Supervised learning techniques were employed using the 
empirical data from the two field studies with labeled data 
(elevated  and normal workload levels). Supervised learn-
ing algorithms generally consist of two phases: a training 
phase and a classification phase. In the learning phase, the 
algorithm builds a model on the basis of training data and 
their labels. The resulting model is used in the classification 
phase to predict labels (i.e. class membership) for unlabeled 
data. The training period could happen just prior to classifi-
cation, or the classification models could be built earlier, 
based on historical data. The quality of the training data 
will impact the performance of the classifier. We look at 
answering: How does training data within and across indi-
viduals impact automatic cognitive workload recognition? 

Numerous classification algorithms have emerged and we 
report results with five different classifiers. We aim to in-
vestigate: How does classification algorithm impact the 
ability estimate elevated workload with physiological data?  

The final goal with the real-time classifier is to evaluate in-
vehicle interfaces and technology using the automatic cog-
nitive workload detection in combination with more tradi-
tional measures. Using this framework, we can identify 
moments of interest during task performance where cogni-
tive workload is elevated. This can be analyzed to identify 
interface, driving, and environmental conditions that may 
have induced elevated cognitive load. The rest of the paper 
focuses on practical issues for using this in realistic settings. 

EXPERIMENT FRAMEWORK 
We conducted two experiments based on data collected in 
field studies to explore the practical considerations for au-
tomatic classification of cognitive load during actual on-
road driving. In both field studies, participants drove on an 
interstate highway while vehicle performance and physiol-
ogy data were recorded. In addition to the primary driving 
task, participants had to complete a cognitive demand task 
described below as a proxy for secondary tasks that cause 
elevated workload.  

We describe our approach to classification and the various 
parameters that could affect the classification results. These 
include: machine learning algorithm, window size, overlap 
of windows and features used. In the first experiment with 
20 subjects, we look at classifying individual driver’s work-
load levels by building unique models for each person. In 
the second experiment with 99 subjects, we explore build-
ing classification models across individuals, reducing the 
need for training on each individual. Common elements of 
the field studies are detailed below. 

Secondary Task Procedure 
In the two field studies, an auditory presentation - verbal 
response delayed digit recall task was employed to impose 
additional mental workload while driving. This “n-back” 
task is documented in detail in [21]. The single digits 0-9 
were presented one at a time at 2.25 second intervals in a 
randomly ordered sequence. As each new item was present-
ed, participants were required to say out loud the digit two 
items back in the current sequence. An example set of a  
2-back task is shown in Table 1. (The 0-back where a  
participant simply repeats each number as it is presented 
and 1-back where the number one item back in the se-
quence have also been used and elicit lower levels of de-
mand.) This secondary task requires auditory perception 
and cognitive processing involving working memory. This 
has been shown in previous work to increase cognitive de-
mand [20,29] and is being utilized as a calibration task that 
provides drivers with a consistent, and validated, dose of 
high cognitive demand that has been used in prior studies. 

Vehicle Equipment and Physiological Sensors  
In both experiments, a vehicle was instrumented for time-
synchronized data collection from embedded vehicle sen-
sors, a MEDAC System/3 monitoring system (NeuroDyne 
Medical Corp., Cambridge, MA). Vehicle performance data 
were logged at 10 Hz and physiological data at 250 Hz. The 
first data set was collected in a 2010 Lincoln MKS and the 
second data set was collected in a 2004 Volvo XC90.  

Electrocardiogram (EKG) recordings employed a modified 
lead II configuration: the negative lead was placed just un-
der the right clavicle (collar bone), the ground lead just un-
der the left clavicle (Figure 1), and the positive lead on the 
left side over the lower rib. The skin was cleaned with iso-
propyl alcohol and standard pre-gelled silver/silver chloride 
disposable electrodes (Vermed A10005, 7% chloride wet 
gel) were applied. Skin conductance was measured utilizing 
a constant current configuration and non-polarizing, low 
impedance gold plated electrodes that allow electrodermal 
recording without the use of conductive gel. Sensors were 
placed on the underside of the outer segments of the middle 
fingers of the non-dominant hand and secured with medical 
grade paper tape. The thin surface, low profile design of the 
electrodermal sensors minimize interference with a natural 
grip of the steering wheel associated with the use of more 
traditional cup style electrodes. Figure 1 shows one of the 
two sensors. Measures of driving speed, steering wheel 
position, and acceleration data were recorded directly from 
the controller area network (CAN) bus of the vehicle. 

A research associate was seated in the rear of the vehicle 
and was responsible for providing driving directions, ensur-
ing safe vehicle operation, that participants understood and 

Stimulus 9 3 7 1 8 0 2 4 6 5 
Response . . 9 3 7 1 8 0 2 4 

Table 1. Example task block of auditory stimuli and the 
appropriate verbal responses in a 2-back secondary task 

performed during on-road driving. 
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followed instructions, recording telemetry was working 
properly and that the experiment proceeded according to a 
predefined script (Figure 1). The data acquisition system 
supported playing recorded audio and this ensured that pri-
mary instructions and tasks were presented consistently. 

Data Preprocessing 
A typical EKG waveform of a heartbeat consists of six 
components labeled P, Q, R, S, T and U. Each wave repre-
sents a specific stage in the underlying physiological pro-
cess of a cardiac cycle. The most prominent pattern in the 
EKG waveform is the QRS segment since it usually con-
tains a sharp spike in the signal (R-wave peak). However, 
EKG recordings often contain artifact (e.g. interference 
from skeletal muscle activity or electrical noise) and anom-
alies (e.g. as a result of heart conditions or equipment fail-
ures). We employed a QRS detection algorithm [2,7] to 
identify heart beats in the signal. The results of the heart 
beat detection were manually reviewed and edited. Heart 
rate (HR) and heart rate variability (HRV) have both been 
used successfully for assessing operator workload. Howev-
er, prior work [22] found HR to be more robust than HRV 
during driving and a similar secondary task. This motivated 
our choice to use HR features instead of HRV features. 

The skin conductance recordings were filtered using a 
wavelet transform to remove high frequency noise ([29]). 
Decomposition at level 4 using Coiflet wavelets with 5 van-
ishing moments showed best results during our exploratory 
analysis. Gross low frequency movement artifact was iden-
tified by manual inspection and removed. 

Steering wheel reversal rates measure the frequency of 
steering wheel reversals exceeding a certain threshold angle 
(commonly referred to as gap). This reflects stability of 
control as distraction can cause quick large corrections. 
Steering wheel reversal rates were calculated using a 2nd 
order Butterworth filter as described in [27], and were pro-
vided as reversals per minute. Large reversals have gap size 
3 and cut-off 0.6Hz whereas small reversals have gap size 
0.1 and cut-off 2Hz. After preprocessing, signals were 
resampled to 10 Hz. 

Feature Generation 
In both experiments, similar feature generation methods 
were used for testing classification approaches. A labeled 
dataset was built from the synchronized sensor data. Data 
acquired during the cognitive demand task periods are  
labeled as elevated workload. A period is extracted from 
driving only periods and labeled normal workload.  

To preserve information about the temporal dynamics, a 
sliding-window approach was used to aggregate attributes 
over specific time intervals (Figure 3). Each feature is com-
puted using a fixed-length sliding window operator moving 
over the data. For each window, a set of features is comput-
ed. We take the mean, standard deviation, minimum, max-
imum and first derivative of the following measures: heart 
rate, skin conductance level (SCL), and vehicle velocity. In 

addition, we compute the number of small and large steer-
ing wheel reversals. 

Two parameters have to be specified to generate aggregate 
feature vectors: the window length and overlap factor. The 
window length determines the number of data points per 
signal to be considered for a single window. The overlap 
factor effectively determines the time offset between the 
first data points of two successive windows. While window 
length influences how much historical information is con-
tained in a single window, the overlap factor influences 
how much historical information is shared among succes-
sive windows. In the results reported below, sliding  
windows of 10, 15, 20, 25, and 30 seconds are used with 
overlap percentages of 0%, 25%, 50%, and 75%. 

Five feature based learning techniques are used in this  
analysis: decision trees, logistic regression, 1-nearest 
neighbor, multilayer perceptron, and naïve Bayes. These 
were chosen because they are simple learners, they generate 
explicit interpretable models and they can be implemented 
as incremental learners (i.e. they can adjust the existing 
model and do not have to relearn from scratch when  
confronted with new training data).  

EXPERIMENT 1: AUTOMATIC CLASSIFICATION OF 
ELEVATED WORKLOAD IN INDIVIDUAL DRIVERS 
In the first study, we collected data from 20 participants 
with the goal of examining the feasibility and practical con-
siderations for automatic classification of elevated work-

 
Figure 4. Experimental protocol for Experiment 1. 
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Figure 3. Sequential sensor data can be broken into fixed-
length windows (green bars at bottom), which slide across 
the data. Within each window, we can calculate average, 
standard deviation, etc. The size of the window and the 

amount of overlap will affect the analysis. 
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load, based on an individual’s vehicle and physiological 
patterns. We wanted to look at building individual models 
to account for individual differences between drivers. 

Participants 
Twenty-six individuals driving more than three times a 
week and having a valid driver’s license for at least three 
years were recruited. Participants had to report a driving 
record free of accidents for the past year. We collected reli-
able heart rate data from 20 participants (9 female, mean 
age of 23.9, standard deviation of 23.0). Due to recording 
issues, only 13 of the participants (7 female, mean age of 
23.2, standard deviation of 2.6) had both reliable heart rate 
and skin conductance levels.  

Procedure 
Participants drove in urban traffic for approximately ten 
minutes before reaching an interstate highway. Subsequent-
ly, drivers were provided an additional twenty minutes of 
interstate driving to familiarize themselves with the vehicle 
and environment before a two minute single task driving 
reference period was established. Afterwards, subjects were 
presented 24 task periods consisting of the 2-back cognitive 
demand task described above, while they continued to drive 
on the highway. Each 30-second task period was followed 
by a ninety second recovery and baseline period (Figure 4). 
Throughout the study, heart rate, skin conductance level, 
speed, and steering wheel position were recorded. 

Classification Approach 
This section describes the signal processing, feature genera-
tion and classification approaches that we explored for au-
tomatic detection of elevated cognitive workload during the 
experiment.  

We were interested in individual classification methods, 
and built separate datasets for each of the 13 participants 
and performed the classification within each set. For each 
dataset, we have 24 30-second examples of elevated cogni-
tive load from the task periods, and 24 30-second examples 
of normal cognitive load extracted from the middle of the 
recovery and baseline periods when the participants were 
just driving. After the signal processing and feature genera-
tion steps described above, classification algorithms were 
run.  

Ten-fold cross-validation was used for evaluating the ap-
proaches. To choose the window size and window overlap 
that yielded the highest classification accuracy, we per-
formed an inner ten-fold cross-validation process within the 
training set. Our data was split first into a training and test 
set. Within that training set, the data was split into a train-
ing and validation set to choose the parameters that per-
formed the best. The outer test set, thus, was not used in 
parameter selection and can provide an estimate of general-
izability of the classification accuracy. In all iterations, 
when data was chosen for a training, validation or test set, 
the entire two-minute task period (including the n-back task 
and rest) was included. This is to ensure that data from a 

task period was not used for choosing parameters, or build-
ing the model as well as testing the accuracy of the method.  

Classification Results 
We report results as the average accuracy achieved from 
each of the datasets, using the nested cross-validation de-
scribed above. The mean accuracy and standard deviation 
for each classifier are shown in Table 2. We looked at clas-
sification using heart rate data only for all 20 subjects and 
also ran the analysis using all features for the 13 subjects 
with complete data. For all features, a one-way analysis of 
variance shows that there is a significant difference in the 
accuracy of the five algorithms, (p < 0.0001). Tukey-
Kramer post-hoc test showed that the nearest-neighbor clas-
sifier performed significantly worse than all four of the oth-
er algorithms. There were no additional significant results. 
For heart rate only (13 subjects), a one-way analysis of 
variance showed significant differences (p < 0.0001). Tuk-
ey-Kramer post-hoc test showed that the nearest-neighbor 
classifier performed significantly worse than logistic re-
gression, multilayer perceptron and naïve Bayes, but not 
decision tree. There were no other significant results.  

Discussion 
The results of this experiment show that we could achieve 
reasonable classification accuracy, using simple features 
and classification methods. Even with only the heart rate 
data, the accuracy did not decrease by much, showing that 
this simple measure has promise for classifying cognitive 
workload for in-vehicle user interfaces. One thing to note is 
that the entire set of 24 trials translates to about 48 minutes 
of data. Thus, with 10-fold cross-validation, we were train-
ing on 90% of this data (or ~43 minutes). This makes sense 
for experiments and a proof-of-concept. However, this 
amount of training time for the classifier is not ideal for 
real-world evaluation. It is likely that future work would 
reduce this training time, and also improve the classifica-
tion results. However, it still is not ideal to build individual 
models. Experiment 2 investigates classification across in-
dividuals that may reduce or eliminate this training time. 

EXPERIMENT 2: ESTABLISHING METHODS ACROSS 
INDIVIDUALS 
Experiment 2 moves toward having general classifiers that 
detect elevated cognitive workload without extensive train-
ing on individual drivers. We worked with data collected 
from 99 participants [20,29] with the goal of finding com-

 All Features Heart Rate 
Mean S.D. Mean S.D. 

Decision Tree 75.0 10.8 72.8 12.8 
Logistic Regression 75.5 10.9 73.9 11.3 

Multilayer Perceptron 75.7 10.9 74.0 12.4 
Naïve Bayes 75.0 12.5 74.1 11.8 

Nearest Neighbor 69.4 11.6 71.5 10.3 

Table 2. Mean and standard deviation for classification of 
elevated cognitive load from normal driving across 13 sub-

jects using all features (20 subjects for heart rate only). 
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mon features and algorithms that reliably can classify cog-
nitive load automatically across individuals.  

Participants 
Healthy individuals driving more than three times a week 
and having held a valid driver’s license for at least three 
years were recruited. As in the previous study, participants 
had to report a driving record free of accidents for the past 
year. 146 individuals took active part in the driving portion 
of the study; however, 38 cases were excluded from the 
final dataset for reasons such as heavy traffic, poor weather 
conditions, or technical issues [20]. In addition, nine more 
subjects were removed from the dataset due to missing data 
or poor measurement quality in at least one signal domain. 
The dataset considered in this paper contains recordings 
from 99 subjects. Aiming for reliability in the real world, 
participants were balanced in age and gender (Table 3). 

Procedure 
Participants drove in urban traffic for approximately 10 
minutes before reaching an interstate highway, on which 
they drove for 20 minutes to familiarize themselves with 
the vehicle and environment prior to a two minute single 
task driving period which established reference data. Af-
terwards, subjects were presented three task periods consist-
ing of a series of four secondary task blocks each. In this 
study, there were periods of the 0-back, 1-back, and 2-back 
task described earlier. However, in this analysis, we fo-
cused on classifying the 2-back elevated periods from the 
single-task normal driving, as in Experiment 1. Future work 
will look at the other levels of demand. Each task period 
was followed by a two minute recovery period. The order 
of presentation of the three task difficulty levels was coun-
terbalanced across participants. Figure 6 shows an overview 
of the experimental protocol. 

Exploratory Analysis 
The data shows that participants had a significant physio-
logical response when presented and engaged in the sec-
ondary task. Figure 5 illustrates the value changes of heart 
rate during the experiment. Task periods are readily identi-
fiable. Also, the counterbalanced presentation order can be 
recognized in each plot. The illustration support the hy-
pothesis that cardiovascular measures are generally sensi-
tive to changes in cognitive workload. We saw similar re-
sults looking at the skin conductance level and thus there is 
promise for classifiers that work across individuals. 

Classification Approaches 
For this experiment, we used similar processing and classi-
fication approaches as in the first experiment. However, the 
data set used included data from 99 participants, and classi-
fication was done across individuals. In addition, we have 
only the set of four consecutive 30-second elevated 2-back 
task periods per individual ( 24 trials in Experiment 1). 

 We were most interested in looking at high demand peri-
ods, and considered only the 2-back high demand periods 
and the single task driving periods. We looked at sliding 
windows of 10, 15, 20, 25, and 30 seconds and overlap fac-
tors of 0%, 25%, 50% and 75% to see the effects that these 
pre-processing parameters have on the classification accu-
racy. We were also interested in understanding the value of 
physiology features, driving features and their combination. 

Age group (years) Mean (SD) Females Males 
20-29 24.75 (2.81) 17 18 
40-49 44.74 (3.01) 16 16 
60-69 63.97 (3.02) 16 16 

Table 3. Age and gender of participants in Experiment 2. 

 

 

Figure 6. Procedure for Experiment 2. 

 

 

Figure 5. Heart rate change during experiment drive. Each row represents the change in heart rate of a single subject during 
experiment drive. Within three task block periods, subjects had to perform a secondary cognitive task (three levels of cognitive 
demand) in addition to the primary driving task. Red indicates maximum heart rate, blue color indicates minimum heart rate. 
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As in Experiment 1, ten-fold cross-validation was used for 
evaluating the approaches. However, we did not choose 
parameters using nested cross-validation. Instead, we report 
results from all choices of parameters as well as from five 
different classification algorithms for exploratory purposes. 
Folds were created based on individuals, so each fold held 
out 10% of the participants. Training and test sets never 
contained data from the same individual. 

Classification Results 
Our exploratory analysis resulted in a large amount of re-
sults (Figure 7). We highlight the main results that are sig-
nificant for in-vehicle HCI research. Figure 7 shows the 
average accuracy for each combination of learning algo-
rithm, sliding window size, overlap factor, and feature type.  

Comparison of Physiological and Vehicle Features 
The type of features had a clear effect on the classification 
results. When physiology features are ignored and classifi-
cation algorithms are trained with features generated from 
driving performance measures only, we found the average 
classification accuracy to be 64% (1st plot in figure). We 
investigated using only heart rate features (mean, min, 
max, standard deviation, and first derivative), ignoring fea-
tures extracted for electrodermal activity measures and 
driving data. With the exception of 1-Nearest Neighbor, all 
other learning techniques performed reasonably well, 
achieving an average of 80% accuracy (2nd plot). Using 
features generated from all available physiology data (heart 
rate and skin conductance level), logistic regression outper-
formed other classifiers achieving the highest performance 
with a 30 second sliding window. Multilayer perceptron 
and naïve Bayes had a significantly lower performance of 
89% accuracy. The best classification performance using 
features from both physiology and driving performance 
data is similar to that using only physiology features. Lo-
gistic regression and naïve Bayes performed significantly 
better than all other classifiers.  

Window size and window overlap 
Figure 7 demonstrates the tradeoff that exists between win-
dow size and classification accuracy. Increasing the win-

dow size improved classification in all cases, except when 
the vehicle telemetry data was used by itself. This is im-
portant as the window sizes imply lag if the classification is 
operating in real time. As one might expect, the curves rise 
much more steeply as smaller window sizes increase to 
medium, and then seem to mostly plateau at the larger win-
dow sizes. It is interesting to note that the overlap factor 
doesn’t have a significant impact on the classification accu-
racy. 

Classification Algorithm 
In the driving only analysis, the multilayer perceptron 
achieved the highest classification performance. In the 
analysis of the heart-rate data, the 1-nearest neighbor algo-
rithm performed worse than the other algorithms. For most 
other analyses, the classifier choice did not make a large 
difference in the results, showing that feature generation 
and selection are key to accuracy in this domain. 

DISCUSSION AND FUTURE WORK 
Through the experiments described above, we examined 
several considerations for developing an automatic cogni-
tive workload classifier for use in evaluating interfaces in 
real-world driving. We illustrate the impact that window 
size, classification algorithm, and training data set have on 
the robustness of the detection, and provide some guidance 
on the choice of these parameters. Similar to Grimes, et al. 
[11], we found a tradeoff between window size and classifi-
cation accuracy. We did not find significant effects of win-
dow overlap. By using large datasets collected in real-world 
driving, we provide realistic estimates of the results of such 
systems. In experiment 1, we train models based on ~40 
minutes of training data per individual. In experiment 2, we 
train models across individuals, using only 4 minutes of 
training data per person. 

While our approach was successful in classifying cognitive 
load with high accuracy, there may be additional measures 
or algorithms that could also provide similar or improved 
results. In fact, it is likely that more sensitive driving per-
formance measures, characterization of visual behavior and 
improved feature sets and algorithms will be developed in 
the future. In addition, there has been interest in classifying 
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Figure 7. Classification accuracy using (from left to right) 1) driving features only 2) heart rate features only 3) all physiology 
features 4) physiology and driving features. Accuracy tends to increase with increased window size. The overlap factor had little 

influence. Nearest neighbor learning algorithm had the lowest classification accuracy, while the other algorithms had similar per-
formance. The best performance was found in 3 and 4, indicating that HR was most sensitive to the cognitive load changes. 
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workload from brain data during driving (e.g. [17]). How-
ever, these would all fit in with the framework in Figure 2. 

From the results of Experiment 2, it is apparent that classi-
fication power in this dataset is coming from physiology 
features, specifically from heart rate derived features. On 
the other hand, for this experiment only a handful of driving 
performance measures were used (velocity and both large 
and short steering wheel reversals); other metrics may 
prove valuable for classification.  

In Experiment 1, we take into account individual differ-
ences by training a classifier for each individual. The ap-
proach employed in Experiment 2 however, makes the  
assumption, that the response to workload is somewhat 
consistent across all types of drivers. In other words, the 
models built using the proposed approach do compensate 
for different physiological or behavioral responses among 
drivers, but they assume that the structural response pattern 
is the same for all drivers. In the future, we could move 
closer to a deployable system where the algorithm is trained 
on a large dataset, and then is able to classify new system 
interactions among a different set of drivers when they en-
ter the vehicle. In a hybrid approach, automatic recognition 
algorithms could be trained on large datasets. Then, a new 
driver may spend a short time providing additional training 
data that is specific to the individual. This could fine-tune 
the model to be customized for the individual that is driv-
ing.  

While our paper provides comparative results of five classi-
fication algorithms, there are additional algorithms and  
approaches that may achieve higher performance. Future 
efforts may wish to consider additional modeling approach-
es. In addition, this work focused on classifying high  
demand periods from single-task driving. We plan to inte-
grate the 0-back and 1-back data that we collected into our 
models to get a comprehensive model of physiological 
changes as demand levels change. Future investigation 
could also look at classification results when the models 
trained on the n-back task data are used to classify work-
load in other, more realistic tasks. It may be useful to com-
pare physiological sensing with cognitive modeling tools 
such as Distract-R [32] that also can be used for in-vehicle 
interface evaluation. Finally, while we used a somewhat 
invasive medical grade EKG, measures of heart rate could 
be integrated in future cars using steering wheel, seat back, 
or other sensor sites to provide physiological measures in 
less invasively. 

CONCLUSION 
In this paper, we have shown that machine learning tech-
niques can be applied to vehicle sensor data as well as driver 
physiological sensor data to provide recognition of elevated 
cognitive load periods. In addition, we report on the results of 
experiments to investigate specific parameters and approach-
es. This work was motivated by the need for additional 
methods for evaluating novel in-vehicle user interfaces to 
provide effective and safe experiences on the road. Poorly 
designed in-vehicle user interfaces can lead to distracted and 
potentially unsafe driving. Thus, the goal of this work was to 

evaluate the feasibility and practical considerations of phys-
iological workload detection during natural driving, with a 
large, balanced group of drivers. We consider this to be a 
foundation for concrete applications such as in-vehicle user 
interface evaluation. Most previous work was either done in a 
simulator or with a small number of participants. In addition, 
the methods we described would apply to classifying work-
load in other contexts, such as game user experience evalua-
tion or passive, adaptive user interfaces (similar to passive 
BCI work [1,9,35,44]), and our sample size is larger than 
most papers in those areas. This has implications for broader 
applications for real-time cognitive load assessment and 
evaluating user interface technology in the wild, beyond 
driver user interfaces. 
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