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Physiological computing—the 
use of human physiological 
data as system inputs in real 
time—enables the creation 

of user-​state representations so that 
software can respond dynamically 
and specifically to changes in the 
user’s psycho-​physiological state.1 
Human–computer interaction par-
adigms tend to fall under this gen-
eral system rubric, including brain–
computer interfaces (BCIs), affective 
computing, adaptive automation and 
health informatics. By connecting 
brain/body to machine, we extend the 
central nervous system’s boundaries, 
enabling us to communicate directly 
with technology via physiological pro-
cesses that underpin thoughts, emo-
tions, and actions. 

Physiological computing sys-
tems fall into two broad categories: 
body schema extensions and mental 

status determinations. Body schema 
extensions deal with sensory-​motor 
functions—those we use every time 
we manipulate our environment 
through our body. Body schema func-
tions are guided by a sense of agency: 
I am the one doing this. For exam-
ple, BCI offers an alternative input-​
control mode to extend the body 
schema.2 Mental status determina-
tions deal with internal psychologi-
cal states including mental workload, 
emotions, and motivation. 

There are two important features 
that distinguish the two categories: 
mental state determinations, such as 
a changes in mood, are unintentional 
and arise spontaneously through 
interactions with events in the envi-
ronment or from internal thoughts; 
in contrast, extensions of body 
schema involve volitional and inten-
tional thought. 

BIOCYBERNETIC LOOP
Derived from cybernetic models of 
closed-​loop control and communica-
tions,4 the biocybernetic loop serves 
as a unifying concept for all physi-
ological computing systems5,6 and 
is composed of three generic stages 
of real-​time data processing: collec-
tion, analysis, and translation. In the 
first stage, physiological data are 
collected via sensors. In the second 
stage, data are filtered and quanti-
fied in an appropriate way and are 
identified and corrected for artifacts. 
In the third stage, data are analyzed 
to achieve a reasonable and accurate 
quantification of physiological data 
that are then translated into a com-
mand that is executed at the human–
computer interface. 

The data collection, analysis, and 
translation processes have a number 
of important requirements: 

As our minds and bodies 

increasingly drive effective 

control of computing 

technologies, our computers 

will adjust according to 

our physiological cues. 

Will it become difficult to 

distinguish where we end 

and our computers begin? 
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›› physiological measures of psy-
chological concepts must be 
validated, 

›› sensor technology must collect 
high-​quality data in the field, 

›› data must be analyzed and 
classified in real ​time, and 

›› the translation from data to 
action at the interface must be 
responsive and coherent. 

These four requirements can be stud-
ied in isolation from one another (and 
often are), but for successful inte-
grated system development, each pro-
cess within the closed loop should be 
mutually dependent on the others.

Simple applications of physiologi-
cal computing are evident in consumer 
electronics including smartphones, 
smartwatches (wristbands), and smart
rings to monitor stress, moods, heart 
rate, and so on. Physiological sensing 
applications beyond these established 
products are also being adopted in 
the health and sports fields to moni-

tor physical conditions, for example, 
brain signals, changes in skin conduc-
tivity (electrodermal activity), facial 
muscle activity (facial electromyogra-
phy [fEMG]), heart rate variability, eye 
movement, and many others. The emer-
gence of sensor apparatuses that are 
comfortable to wear and maintain sig-
nal fidelity is an essential development 

for reaping the full potential benefits of 
physiological computing systems. 

CURRENT WORK 
IN PHYSIOLOGICAL 
COMPUTING 
Emerging research themes for phys-
iological computing systems include 
sensor development, real-​time sig-
nal processing in the field, inference 
processing (for example, between psy-
chological states and objective mea-
sures), data classification methods, 
and interface/interaction design.

Recent advances in physiological 
sensor technology and machine learn-
ing have inspired increased develop-
ment of such systems and expanded 
exploration of new paradigms; one 
example is human–computer symbio-
sis, which posits a deep mutual under-
standing between humans and the 
computers that exploit their implicit 
physiological signals.7 Design prin-
ciples and patterns for this new class 
of interactive systems are shifting to 

better support changing cognitive or 
affective states in humans.8 This type 
of interactive symbiosis corresponds to 
symmetrical human–computer inter-
actions in which information flows 
simultaneously from computer to 
user and vice versa.9 The implications 
of this nascent technology are poten-
tially profound—offering the means 

to create technology that demon-
strates intelligence through its task-​
context and user-​intention sensitivity 
without any explicit information.10

Physiological computing faces 
challenges related to sensor robust-
ness, sensor calibration, miniatur-
ization, and integration in ergonomi-
cally designed, unobtrusive products. 
Moreover, identifying and recog-
nizing physiological states remains 
an open research area requiring 
multidisciplinary investigations 
combining machine learning and 
psychophysiology.  

Exploring potential physiological 
computing applications is ultimately 
contingent on how well we can iden-
tify psychological states that relate to 
our safety, health, and well-​being—for 
example, mental workload, stress, or 
positive mood. Recent work, for exam-
ple, includes quantifying cognitive 
workload to determine safety in super-
visory tasks or driving,11,12 detecting 
data relevance to provide implicit feed-
back for information retrieval,13–15 
conducting research and driving 
adaptation in computer games,16–18 
developing interactive storytelling,19 
training cognitive performance,20 and 
testing usability.21 

The applications that use physio-
logical computing yield a number of 
advantages, such as

›› enhanced interaction, particu-
larly during eyes-​busy or hands-​
busy applications;

›› improved implicit control and/
or response mechanisms, such 
as automatic tagging of media 
content without explicit gestur-
ing; and

›› promotion of desirable psycho-
logical states and mitigation of 
undesirable ones, with benefits 

ADVANCES IN PHYSIOLOGICAL SENSORS 
AND MACHINE LEARNING HAVE SPURRED 

INCREASED DEVELOPMENT AND 
CONTINUED EXPLORATION  

OF NEW SYSTEM PARADIGMS.
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ranging from better perfor-
mance to greater overall health.

Such advantages will spur on further 
developments, improvements, and 
advances in sensor/actuator technolo-
gies and machine learning.

IN THIS ISSUE
The contributions in this special issue 
exemplify advances in the field of 
physiological computing, particularly 
in the application areas, techniques, 
and open challenges.

In “Combining EEG with Pupil-
lometry to Improve Cognitive Work-
load Detection,” David Rozado and 
Andreas Dünser demonstrate how 
multimodal approaches could be 
useful in designing more robust 
physiological computing systems. 
Their approach combines electro-
encephalography (EEG) and pupil-​
dilation measurements to detect 
cognitive workload in test subjects, 
showing how this combination 
improves detection rates in monitor-
ing real-​time cognitive workload.

In “Stress Detection Using Physio-
logical Sensors,” Riccardo Sioni and 
Luca Chittaro provide an overview 
of various physiological sensors that 
capture stress-level data, and demon-
strate these technologies using 
examples from their work in virtual 
reality. The article also includes a 
survey of related work, technologi-
cal limitations, and opportunities for 
future research.

The increased availability and 
complexity of mobile devices taxes 
the finite human capacity for mul-
titasking. In “Designing Brain−
Computer Interfaces for Attention-​
Aware Systems,” Evan M. Peck, Emily 
Carlin, and Robert Jacob describe 
the use of neuroimaging to create 

attention-​aware technologies that 
are capable of scheduling notifica-
tions around the user’s current infor-
mation load. This type of passive BCI 
has enormous potential, but there 
are important limitations associated 
with data complexity in this field. 
The authors describe sensor technol-
ogy (functional near-​infrared spec-
troscopy [fNIRS]), design principles 
for attention-​aware systems, and an 
experimental demonstration of how 
this concept could work.

Physiological computing sys-
tems promise to further inte-
grate our sense of self with 

computer technologies. As the asso-
ciated sensors improve, and as our 
ability to capture and analyze data for 
integration with other technologies 
becomes more efficient, computers 
will continue to move closer and even 
into our physical bodies. The future 
of this field is indeed very bright. We 
hope you enjoy this special issue. To 
join a discussion on this topic, please 
visit the Computer Society Mem-
bers LinkedIn page: www.linkedin 
.com/grp/home?gid=52513&trk=my 
_groups-​tile-​flipgrp. 
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