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INTRODUCTION

Injuries to the brain such as stroke and traumatic brain
injury can cause physical impairments of the motor
system, such as hemiparesis, or partial paralysis. Lasting
motor deficits such as hand impairment can make it
challenging to perform daily living tasks. Assistive and
rehabilitative robotics can be used to restore function
or engage the brain’s neuroplasticity towards regaining
motor control [1]. In order to optimize the design of upper
limb exoskeletons for the promotion of motor relearning,
it is valuable to measure brain activation. Portable
neuroimaging techniques like functional near-infrared
spectroscopy (fNIRS) can be used to monitor neuroreha-
bilitation following brain injuries, which could be useful
for evaluating assistive and rehabilitative technology like
a hand exoskeleton. However, the spatial precision and
resolution of fNIRS is limited without an anatomical
reference, compared to functional magnetic resonance
imaging (fMRI) which has high spatial resolution and
precision.

Both fMRI and fNIRS measure changes in blood oxy-
genation, also known as the hemodynamic response.
Collecting fMRI and fNIRS concurrently provides an
anatomical reference and a trusted brain activation map
from the fMRI for comparison and validation of fNIRS
data. We present a co-registration method using 3D
Slicer to align and overlay brain activation data from
both neuroimaging modalities, allowing researchers to
compare brain activation maps with respect to each
subject’s anatomical brain. This approach demonstrates
how the relation between fMRI and fNIRS data can
enable neurorehabilitation monitoring using fNIRS with
increased spatial understanding.

MATERIALS AND METHODS

A study was conducted to capture brain activation from
fNIRS and fMRI simultaneously during hand motor tasks.
This study was approved by the Worcester Polytechnic
Institute’s institutional review board (HHS #00007374).
Five control subjects (4 male, 1 female; 30 + 9 y.0.) were
recruited from the student and staff population at Worces-
ter Polytechnic Institute. Subjects had no neurological
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Fig. 1 Experimental set-up showing a subject on the MRI
bed with the PneuHOPE Hand attached to their right arm,
an fNIRS cap placed on their head, and additional MRI
compatible equipment.

or muscular injuries/conditions. All subjects showed no
contraindication for being in the MRI scanner. All subjects
except 1 male were right-handed. All subjects were native
English speakers.

An MRI scanner (SIGNA Premier 3.0T Scanner by
GE Healthcare) was used to collect structural images
(T1 weighted scans) and capture brain activation, using
fMRI scan sequences, through measurement of the blood
oxygenation-level dependent (BOLD) signal. A NIRScout
fNIRS system (NIRx, Berlin, Germany) was used to
collect brain activation data using an 8x8 montage of
laser optodes in a cap worn on the head. Laser optodes
were chosen for their MRI compatibility. Two montages,
or optode configurations, were used in this study to
test different coverage options. Both montages consist
of 20 source-detector pairs, resulting in 20 channels
of data, each reporting changes in light absorption at
two wavelengths, one for de-oxygenated hemoglobin
concentration changes, and the other for oxygenated
hemoglobin concentration changes. Fiducials were placed
on the fNIRS optodes to identify their location with
respect to the anatomical brain in 3D space using MRI.
The PneuHOPE Hand, an MRI compatible hand exoskele-
ton designed for individuals with spastic hand impairment
following an upper motor neuron injury, was used to
facilitate hand movement, and worn throughout the study
[2]. A NordicNeuroLab heads-up display was used in this
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study to display visual prompts which instruct the subjects
in performing the study tasks. The experimental set-up can
be seen in Figure 1.

Subjects were asked to complete two tasks during their
study session, 1) finger tapping, and 2) exoskeleton
facilitated hand movement with active collaboration. Each
trial consisted of four 30-second active blocks and five
alternating 30-second rest blocks. This block paradigm
was used to define the expected time course of brain
activation.

Standard pre-processing was performed on both fMRI and
fNIRS data, then a generalized linear model (GLM) was
created using the hemodynamic response function for both
fNIRS and fMRI data, to fit the brain activation data to the
active task blocks. Statistical parametric mapping (SPM)
was used on the fNIRS data to create a brain activation
map consisting of 20 channels across the montage,
performed in nirsLab (NIRx, Berlin, Germany). A cluster
analysis was performed on the fMRI data to generate
cluster volumes of activation using FEAT analysis in
FMRIB Software Library (FSL) [3]. Significant activation
from both fMRI and fNIRS data is determined with
p < .05.

A high resolution MRI structural scan was segmented
in 3D Slicer to generate a subject-specific brain model,
as well as a model of the fiducials marking the fNIRS
optode locations. A lower resolution brain segmentation
was generated using the fMRI scan. The activation volume
was also segmented to generate a model. All of these
models can be seen in Figure 2A. Significant activation
measured by the simultaneous fNIRS system is shown
on a generic brain with colored channels that are located
based on assumed optodes locations (seen in Fig. 2B.
This generic model and assumed optode spacing may
be inaccurate with respect to each subject’s anatomical
brain and activated region. Channel segmentations were
created in 3D Slicer, using the accurate fiducial locations,
and colored to represent the intensity of the activation of
each channel from the fNIRS data. Figure 2C displays the
fNIRS data visually overlaid on the anatomical brain so
it can now be compared to the activation captured by the
fMRI.

RESULTS

A pipeline for co-registering fNIRS and fMRI data was
presented and data was collected in a preliminary study.
Brain data from fNIRS can be accurately translated into
the subjects’ anatomical coordinate system to compare
with the brain anatomy and fMRI data.

DISCUSSION

Spatial assumptions made with fNIRS alone can make
it challenging to interpret brain data with respect to
the anatomical brain structure and function, especially
after brain injury, making it challenging to monitor
neurorehabilitation. This preliminary study, the presented
co-registration pipeline and the resulting overlaid brain
activation maps provide context for the fNIRS data,
enabling confident collection of anatomically relevant
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Fig. 2 A) Neuroimaging data from MRI and fMRI in
3D Slicer, B) Neuroimaging data from fNIRS shown
on generic brain with assumed optode locations, C)
Neuroimaging data from fMRI and fNIRS overlaid in 3D
Slicer with respect to anatomical brain from MRI. Task:
finger tapping.

fNIRS data in subsequent studies to monitor neurorehabil-
itation during hand exoskeleton use. This pipeline could
be used to create subject-specific fNIRS montages for
individuals with brain injuries to ensure spatial relevance
during longitudinal studies that use low-density fNIRS
alone for portable neuroimaging.

Using fiducials to co-locate points with the MRI is a
common technique in surgical robotics for robot regis-
tration. 3D Slicer is commonly used in surgical planning
for visualizing critical brain structures in preparation
for surgery. The presented pipeline could also be used
to capture critical functional volumes in the brain to
avoid during surgery. For example, language tasks can
be used to identify cortical areas necessary for speech
and language comprehension, which can then be avoided
during surgery.
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