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Abstract
Automatic detection of an individual’s mind-wandering state has implications for designing and evaluating engaging and
effective learning interfaces. While it is difficult to differentiate whether an individual is mind-wandering or focusing on the
task only based on externally observable behavior, brain-based sensing offers unique insights to internal states. To explore
the feasibility, we conducted a study using functional near-infrared spectroscopy (fNIRS) and investigated machine learning
classifiers to detect mind-wandering episodes based on fNIRS data, both on an individual level and a group level, specifically
focusing on automated window selection to improve classification results. For individual-level classification, by using a
moving window method combined with a linear discriminant classifier, we found the best windows for classification and
achieved a mean F1-score of 74.8%. For group-level classification, we proposed an individual-based time window selection
(ITWS) algorithm to incorporate individual differences in window selection. The algorithm first finds the best window for
each individual by using embedded individual-level classifiers and then uses these windows from all participants to build the
final classifier. The performance of the ITWS algorithm is evaluated when used with eXtreme gradient boosting, convolutional
neural networks, and deep neural networks. Our results show that the proposed algorithm achieved significant improvement
compared to the previous state of the art in terms of brain-based classification of mind-wandering, with an average F1-score
of 73.2%. This builds a foundation for mind-wandering detection for both the evaluation of multimodal learning interfaces
and for future attention-aware systems.
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1 Introduction

Mind-wandering occurs when an individual is engaging in
internal non-task thoughts, instead of processing external
task-related information [20]. Even though people may be
generally unaware of when it occurs, mind-wandering could
occupy 46.9% of daily life [36]. While some studies suggest
that mind-wandering may contribute to future planning and
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creative problem solving, mind-wandering has shown to be
disruptive and detrimental to individuals’ performance when
it happens during cognitively demanding tasks [56]. There-
fore, the detection of mind-wandering states is important for
many domains, and particularly for learning and training. For
example, when a student is engaging in cognitively demand-
ing tasks such as learning, mind-wandering would negatively
affect task performance and lead to errors [43].

While technology-enhanced learning such as intelligent
tutoring interfaces, serious games and Virtual Reality (VR)
environments showpromise for enhancing learning and train-
ing experiences, research shows not all interface features
or virtual environments elements increase the effectiveness
[47,66]. As such, identification of a user’s mind-wandering
episodes and on-task episodes in a learning interface could
inform evaluations. Further, detectingmind-wandering states
is an important step towards attention-aware systems, which
can dynamically update interfaces and content to facilitate
user focus on task-related information. For example, when
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the system detects an individual is mind-wandering during
training sessions, it could change the presentation to help the
user focus on important materials [54].

To measure mind-wandering, many researchers use an
experience sampling methodology. With this method,
researchers ask individuals to self-reportwhenmind-wandering
occurs during a task or place thought probes during the
task, which periodically ask individuals whether they are
mind-wandering. However, these methods have a limita-
tion due to their dependence on participants to be aware
of their mind-wandering episodes and respond accurately.
Also, the thought probes interrupt both the task and themind-
wandering episodes [43].

One possible solution to address these limitations is
to examine an individual’s brain activity directly and use
the brain data to disentangle focused states from mind-
wandering states. Functional magnetic resonance imaging
(fMRI) studies show that mind-wandering is associated
with activation in the default network [20]. Several default
mode network areas have shown consistent activation dur-
ing mind-wandering, including medial prefrontal cortex,
medial temporal lobe, posterior cingulate cortex, and bilat-
eral inferior parietal lobule [14]. Moreover, as non-invasive
neuroimaging techniques become less expensive and more
portable, we can monitor brain activity during various activ-
ities.

Recently, the use of functional near-infrared spectroscopy
(fNIRS) has received focus because of its promise for detect-
ing an individual user’s cognitive state in more ecologically
valid studies. While fMRI has become the gold standard for
brain imaging, in real-world environments, fNIRS is a more
convenient and more affordable technology than fMRI [17].
fNIRS emits near-infrared light into the brain, and the light
returned to the surface is measured and used to calculate oxy-
genation in the blood. This calculation reflects brain activity
in that particular area. Prior work has shown the potential of
using fNIRS data to identify brain activation related to mind
wandering episodes [19].

In this paper, we aim to build on previous findings and
present a data-driven classification framework to improve
mind-wandering classification accuracy. Since prior fNIRS
studies have shown that the classifier performance can be
improved by focusing on a specific window [35,44,58], we
utilize a moving window method for the classification of
mind-wandering, which can select the best window for clas-
sification during a time period. In addition to buildingmodels
for each individual, we also demonstrate the feasibility of
building machine learning models across individuals to dif-
ferentiate mind-wandering episodes versus on-task episodes.

For individual-level classification,we use themovingwin-
dow method combined with a shrinkage LDA classifier to
find the best window for detecting mind-wandering. For
group-level classification, to incorporate individual differ-

ences in window selection and hence improve the classi-
fication results, we propose a novel individual-based time
window selection (ITWS) algorithm. The ITWS algorithm
iteratively chooses the best window for each individual
through embedded individual-level classifiers, and then uses
data from these windows as training data and test data
for the group-level classifier. We validate the framework
using an fNIRS dataset we collected with mind-wandering
episodes and on-task episodes during the Sustained Atten-
tion to Response Task (SART). The errors during the SART
have been shown to be correlated with mind-wandering [43],
and thus form a ground truth for our classification results.

The main contributions of this paper are as follows:

– We propose to use fNIRS brain data for evaluating learn-
ing interfaces and for attention-aware systems that can
automatically detect mind-wandering state without inter-
rupting the task with experience sampling probes.

– We describe a study in which we collected fNIRS brain
data during the SART task. This dataset provides exam-
ples of mind-wandering and on-task episodes, defined
based on behavioral data, that can be used to investigate
robust classification algorithms. We confirm that there
are differences in frontal lobe blood oxygenation patterns
between mind-wandering episodes and on-task episodes.

– To improve classification accuracy, we investigate win-
dow selection when classifying mind-wandering states
versus on-task state using fNIRS. We show individual-
level classifiers can achieve better classification results
when focusing on specific windows rather than those
using the entire episodes.

– To further improve model robustness and performance,
we extend the window selection method for group-level
classification. We propose a novel individual-based time
window selection (ITWS) algorithm to incorporate indi-
vidual differences in window selection when building
group-level classifiers. We show that the ITWS algo-
rithm can improve the group-level classification result by
comparing with other methods that do not use the ITWS
algorithm.

2 Background

2.1 fNIRS-based brain–computer interfaces

Brain–Computer Interfaces (BCIs) have shown promise
for improving interactive experiences by offering unique
insights into users’ underlying cognitive processes. As such,
brain-sensing techniques can be used not only as the primary
control module for interfaces but can also be employed as a
complementary input to traditional control modules for mul-
timodal interfaces.
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fNIRS is a brain-imaging tool that is safe, portable, easy
to use, and quick to set up characteristics that have led to
increasing adoption. It detects hemodynamic changes asso-
ciated with neural activity in the brain while participants
perform cognitive or behavioral tasks [10]. Because fNIRS
enables brain activity to be measured continuously during
interactive tasks, it has promise for understanding user expe-
rience in realistic settings. The fNIRS sensors use light to
detect hemodynamic changes. The light sources send two
wavelengths of near-infrared light into the forehead, where
it continues through the skin and bone 1–3cm deep into the
cortex. Biological tissues are relatively transparent to these
wavelengths. Oxygenated and deoxygenated hemoglobin are
the main absorbers of this light. After the light scatters in
the brain, some reaches the light detector. By determining
the amount of light picked up by the detector, the amount of
oxygenated and deoxygenated hemoglobin can be calculated
in the area, which indicates hemodynamic activity associ-
ated with brain activation. Thus, fNIRS measurements can
be used to understand changes in a person’s cognitive states
while performing tasks [50,63].

There are other techniques that can measure the changing
state of the brain (e.g., fMRI, EEG, positron emission tomog-
raphy (PET), and magnetoencephalography (MEG)). These
tools are often prohibitively expensive and require restric-
tions on the study participant that are not reasonable for use in
realistic settings. Also, PET requires ingestion of hazardous
material, and fMRI exposes individuals to loud noises that
may interfere with the study [30]. The strong magnetic field
prevents typical computer usage in both fMRI and MEG.
EEG is less intrusive, more portable, and less expensive than
these other tools. It has been widely used in brain–computer
interfaces research, such as interface evaluation and adapta-
tion [13,34,48]. However, it can have a significant setup time
and has limited spatial resolution. Electronic devices in the
room can also interfere with the signal, and it is susceptible
to artifacts in the data due to user movement.

fNIRS avoids many of the restrictions of other techniques
and therefore has promise for use in real-world settings and
virtual environments. It has been shown to be robust in typi-
cal human-computer interaction scenarios, including during
typing andmouse clicking [63], and verbalization [52]. Real-
time fNIRS brain data has been used to make appropriate
adaptations to user interface elements [2] as well as to mod-
ulate interruptions [55] and enable attention-aware systems
[51]. fNIRS hyperscanning has also shown promises to mon-
itor multiple participants’ brain activation simultaneously
during their natural interactions [39]. Significant improve-
ments have been made recently in terms of fNIRS hardware
to make it wearable and wireless, and we foresee it being
increasingly integrated with wearable computing platforms
currently being developed [40,41].

2.2 Detection of mind-wandering inmultimodal
learning interfaces

Technology-enhanced learning is increasingly adopted for
providing novel solutions in educational and training activi-
ties, such as intelligent tutoring interfaces, serious games, and
VR environments. Previous studies have shown the positive
effects of such applications in improving students’ cogni-
tive states during learning, includingmotivation and attention
[16,18]. Mind-wandering has also shown to play an impor-
tant role in students’ learning performance. Mind-wandering
can be detrimental to student learning, where instead of pro-
cessing external task-related information, students engage
in internal non-task thoughts [61]. Therefore, detection of
mind-wandering would be valuable for understanding users’
attention control mechanisms during these interfaces. Nev-
ertheless, since mind-wandering involves internal thoughts
instead of expressive behaviors and the dynamics of mind-
wandering remain elusive, detecting mind-wandering is a
challenging task [32]. Prior research has investigated using
physiological and behavioral metrics, as well as brain data
for mind-wandering detection.

2.2.1 Physiological and behavioral metrics of
mind-wandering

Probe-caught mind-wandering has been predicted using eye
gaze [5,29], physiological sensing [6,9], behavioral indices
[21,42], and facial expression [7]. Hutt et al. used eye gaze
and contextual cues as features to predict mind-wandering
state when participants were interacting with an intelligent
tutoring system. Participants were randomly probed to report
mind-wandering instances. They achieved a prediction accu-
racy of about 25% above chance [29]. Physiological features,
including heart rate [9] and skin conductance [6], have also
been used for mind-wandering detection. Blanchard et al.
measured participants’ skin conductance and skin tempera-
ture to detect mind-wandering during a reading task. They
achieved 22% above chance accuracy [6].

Some researchers also used behavioral indices, including
reading behaviors and textual features, to detect mind-
wandering during reading tasks [21,42]. The resulting accu-
racy is 20%above chance for a somewhat naturalistic reading
paradigm [42]. However, this method is limited to reading
tasks.

Another approach is using facial expressions and move-
ments to detect mind-wandering state. Bosch and D’Mello
applied this approach in a laboratory study where partici-
pants read a text and in a classroom study where high school
students learned biology from an intelligent tutoring sys-
tem. After extracting facial and movement features from the
recorded video and applying machine learning classifiers,
they achieved 25.4% and 20.9% above-chance accuracy for
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detecting mind-wandering in the lab and classroom, respec-
tively [7].

For all of these investigations, the models built are ad-hoc
and depend on a set of measurable factors that have shown
to be related to mind-wandering in the specific task.

2.2.2 Brain-basedmetrics of mind-wandering

Brain sensing techniques provide an alternative to detect
mind-wandering objectively across different domains. Some
researchers explored using EEG brain signals to differ-
entiate mind-wandering versus on-task. Kawashima et al.
used EEG variables to estimate mind-wandering intensity
through support vectormachine regression during a sustained
attention task [33]. However, the mind-wandering intensity
was determined by thought probes, which were placed at a
fixed interval. This could lead to individuals anticipating the
probe occurrence and becoming more conscious of mind-
wandering. Jin et al. trained machine-learning models on
EEG markers to determine participants’ state as either mind
wandering or on-task, and they achieved a mean accuracy of
64% for a sustained attention task [32].

2.2.3 Considerations

In all these studies, probes were used to catch mind wander-
ing by asking participants whether they are mind-wandering.
Researchers then focused on an interval of time that precedes
the probes (10 s or 30 s). These probes allow researchers to
mark the time point when mind wandering is actually hap-
pening. However, it interrupts the mind wandering episodes,
and can only collect the mind wandering episodes that par-
ticipants are aware of. Therefore, exploring the detection of
mind-wandering episodes without interruption would be an
important step toward fully automated attention-aware sys-
tems and environments. In this work, we explore fNIRS brain
measures of mind wandering and use the SART task to elicit
mind-wandering episodes, since the errors during the SART
task have been shown to be correlated with mind-wandering
[43].

2.3 Mind-wandering classification with fNIRS

2.3.1 Accuracy of mind-wandering detection with fNIRS

Asmentioned earlier, activation of the medial prefrontal cor-
tex during mind-wandering has been detected using fNIRS
during a sustained attention task [19]. This study showed
promise for detecting default network activations related to
mind-wandering from fNIRS data. However, this work also
highlighted the difficulty of real-time detection of mind-
wandering using only fNIRS data. Their machine learning
model achieved a mean accuracy of 56% for classifying

mind-wandering episodes versus on-task episodes using Lin-
ear Discriminant Analysis for each individual separately.
For real-world use, this accuracy would need improvement.
Therefore, there is a need to exploremethods that can achieve
higher accuracy. Two approaches that may hold promise are
1) exploring automatic detection of optimal time windows,
and 2) exploring both individual and group models.

2.3.2 Optimal time windows for classification

Whilemany studies build and evaluatemachine learning clas-
sifiers using fNIRS data associated with the entire episodes
(e.g., entire mind-wandering episode or on-task episode
[19]), other fNIRS studies have shown that we can improve
the classifier performance by focusing on a specific window,
instead of using the fNIRS data from the overall task period
[35,44,58]. Naseer et al. used fNIRS data to classify right-
and left-wrist motor imagery task and they analyzed six dif-
ferent temporal windows within an overall 10 s task. They
showed that the 2–7s period after the stimulus was the most
critical period and they could enhance the average classifi-
cation accuracy by around 4% by focusing on this period
[44]. Khan et al. used linear discriminant analysis to find the
best window size for detecting drowsiness using fNIRS [35].
They analyzed three different timewindows (0–3s, 0–4s and
0–5s), and proposed drowsiness detection in 0–4s window
when using fNIRS. These approaches compare a few pre-
defined windows and select the one with the best outcomes.

Researchers have also used themovingwindowmethod to
explore all windowswith a specific size and find the best win-
dow for classification using fNIRS data [8,58]. For example,
Shin et al. conducted two fNIRS experiments (left vs. right-
hand motor imagery; mental arithmetic vs. resting state),
and used a 3s moving window with 1 s step size to find the
maximum classification accuracy over time. The classifica-
tion accuracy achieved by the best window is significantly
higher than those for the other windows [58]. Hennrich et
al. adopted an n-back task with fNIRS to induce different
levels of workload and extracted 10s windows for workload
classification. Their results show that classification accuracy
differs between differentwindows, and peak around 10s after
the trial start [24].

From all these studies, the results show that the optimal
windows vary between different participants and different
tasks. Moreover, both the window sizes and the offset from
start time can affect the accuracy of the classification results.
Therefore, in this work, we use the moving window method
along with different window sizes to find the best window
for mind-wandering classification.
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2.3.3 Individual versus groupmodels

In prior work, machine learning models were built for each
participant separately (individual-level models) [19]. Con-
sidering the small dataset of each participant and the high fea-
ture space of the brain data, building models per-participant
could lead to overfitting and achieving overly-optimistic
results [15]. As such, researchers have shown the need for
building models across participants [4].

Building models across participants (i.e., group-level
models) can enable researchers to get an adequate amount
of data for model training while reducing the time for col-
lecting brain data. Compared to individual-level models, the
group-level models are more robust and can achieve more
reliable results. However, due to the individual differences
in hemodynamic responses, it is a challenge to build robust
models across participants based on fNIRS data.

To solve this issue, prior work has investigated optimal
feature combinations for each participant [27,49]. For exam-
ple, Noori et al. used the hybrid genetic algorithm to choose
the optimal feature for each participant [49]. Hossein et al.
applied a personalized feature normalization approach to
standardize the extracted feature values of each participant to
improve the performance of group-level models. However,
even though prior work shows that the optimal windows vary
between different participants, little attention has been paid
to the effect of individual differences in window selection
on the performance of group-level models. In this paper, we
investigate possiblemethods for incorporating individual dif-
ferences in window selection for group-level modeling.

3 Toward attention-awaremultimodal
interfaces with fNIRS

We propose to use fNIRS data for attention-aware interfaces
that can automatically detect mind-wandering states without
interrupting the task with experience sampling probes. This
could be valuable for designing and evaluating learning inter-
faces, as well as developing adaptive learning systems. For
example, identifying mind wandering during an evaluation
of a novel educational game could lead to adjustments in the
design to keep the users engaged. Alternatively, when a sys-
tem automatically detects an individual is mind-wandering
during online learning, it could change the presentation to
help the user focus on important tasks and materials.

To build multimodal interfaces with fNIRS, Solovey et al.
pointed out that there are some common high-level phases
[64], with calibration phase, modeling phase, and real-time
classification phase being themain phases for real-time appli-
cations [64]. During the calibration phase, users are asked
to perform a set of cognitive benchmark tasks. The cogni-
tive benchmark tasks are experiment tasks from cognitive

Fig. 1 The workflow of developing attention-aware multimodal inter-
faces using fNIRS

psychology that can elicit different targeted cognitive states
[25]. fNIRS data recorded during the cognitive benchmark
tasks is then used to train machine learning classifiers. In the
real-time classification phase, the machine learning model
continuously classifies the newdata coming in. Classification
results can then be used for evaluating the interfaces or sent
to the system for necessary adaptations. We describe these
phases for developing attention-aware multimodal learning
interfaces with fNIRS in Fig. 1.

To move toward this goal, mind-wandering classification
accuracy needs to be higher than shown in previous work
[19]. To do this, appropriate datasets need to be created for
validating algorithms formind-wandering classification. Fur-
ther, research needs to explore the impact of individual and
group models and appropriate time windows to demonstrate
the potential of this approach.

4 Data collection

We set out to build a dataset of fNIRS data associated with
mind-wandering episodes without using experience sam-
pling probes and to investigate methods of distinguishing
mind-wandering states from on-task states with high accu-
racy. To do this, we conducted a human-subjects study that
was approved by our institutional reviewboard, and informed
consent was obtained for all participants.
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Fig. 2 Time course of the SART protocol. The number was shown on a
white screen for 0.5 s, followed by a blank screen for 1.0 s. Participants
were asked not to press the space bar for the target number 3 and press
the space bar for any other numbers

4.1 Sustained attention to response task

To elicit mind wandering, we used a well-studied paradigm
called the Sustained Attention to Response Task (SART)
[38]. The SART shows a number (0–9) at the center of a
blank white screen for 0.5 s, followed by a blank screen for
1.0 s. Participants were instructed to respond by pressing a
key for each stimulus that appears except for the target stim-
ulus, the number 3. When a ‘3’ is shown, the participant is
instructed not to press any key and to wait for the next num-
ber. For typical SART tasks, the target stimuli occurs around
5–11% of all stimuli [31,38]. Since prior work has shown
that a low proportion of target stimuli allows increasedmind-
wandering during the task [38], we adopted a frequency of
5% for the target stimuli to elicit mind-wandering state from
the participants. Also, following previous work [38], targets
are presented pseudorandomly throughout all trials and are
arranged to ensure that they did not appear immediately next
to each other.

Figure 2 shows the time course of the SART protocol. An
incorrect keypress for the target stimulus has been associated
with mind-wandering, while a correct response indicates on-
task behavior [62].

4.2 Procedure

Participants were given an overview and instructions for the
task and informed about the brain sensing equipment that
would be worn during the study. After providing informed
consent, each participant was given instructions about the
SART task and the opportunity to ask questions. Participants
were equipped with the fNIRS sensors on their forehead.
Then participants performed the SART task on a computer.

Fig. 3 Placement of fNIRS sources (red circles) and detectors (blue
circles). Green solid line indicates fNIRS channels

The experiment consists of 6 sections, with 10 targets and
190 non-targets. In between sections, there was a 10-s break.

At the end of the experiment, individuals were given
a questionnaire where they were asked how focused they
were throughout the task (scale of 1–7), and if they expe-
rienced unrelated thought or drowsiness (from ‘never’,
‘rarely’, ‘occasionally’, ‘sometimes’, ‘frequently’ to ‘very
frequently’, later converted to a 6-point scale).

4.3 fNIRS recording

The fNIRSdatawas acquired using amultichannel frequency
domain Imagent from ISS Inc. (Champaign, IL). Two probes
were placed on the forehead to measure the two hemispheres
of the anterior prefrontal cortex (Fig. 3). The source-detector
distances were of 0.8 cm or 3 cm. Each light source emits two
light wavelengths (690 nm and 830 nm) to detect and differ-
entiate between oxygenated and deoxygenated hemoglobin.
The sampling rate was 6.649 Hz. The sensors were kept in
place using headbands, which can also reduce light interfer-
ence.

4.4 Participants

The study included 11 healthy volunteers (5 males) between
the ages of 18 and 41 (average 26.27).
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5 Dataset curation

Based on the fNIRS data collected during the experiment, we
built the dataset for investigating the classification of on-task
and mind-wandering states. We also analyze participants’
performance on the task and compare the results with prior
work.

5.1 General dataset description

The dataset consists of fNIRS data of 6 channels, from 11
participants. Since the two short-separation channels (0.8 cm)
contain mostly noise, we only analyze fNIRS signals from
the six long-separation channels (Fig. 3).

5.2 Dataset preprocessing

The fNIRS signals from the device may contain noise from
various sources, including instrumental noise,motion artifact
and physiological noise [45]. Following typical preprocess-
ing techniques [53], we used a band-pass filter with a high
pass value of 0.02 and a low pass value of 0.5 to remove
the physiological noise (e.g., heart rate, respiration) and the
instrumental noise. The motion artifacts were removed using
a wavelet-based de-noising and correction procedure [45].
Raw light intensity data was then converted to oxygenated
and deoxygenated hemoglobin values using the Modified
Beer-Lambert Law. All preprocessing was completed in
MATLAB using HomER [28].

5.3 Dataset labeling

Toprepare the datasets for analysis and classification, follow-
ing the work of Durantin et al. [19], for each target episode,
we extracted fNIRS data from 30s before the target and 10s
after the target. Target episodes with a correct response were
labeled as on-task episodes, while target episodes with an
incorrect responsewere labeled asmind-wandering episodes.
All non-target episodes were ignored for this analysis since
they were not indicative of our target classes. Figure 4 shows
the number of mind-wandering episodes and the number of
on-task episodes from each participant’s dataset. Due to the
nature of the task, the number of on-task andmind-wandering
episodes varied across participants. For each participant, the
number of mind-wandering episodes ranged from 8 to 33 out
of 60 total targets and the number of on-task episodes varied
from 27 to 52 out of 60 total targets (Fig. 4). Across all par-
ticipants, the dataset contains 239 mind-wandering episodes
and 421 on-task episodes in total.

Fig. 4 The number of mind-wandering episodes and the number of
on-task episodes from each participant. Each episode consists of 30 s
before the target and 10s after the target

5.4 Behavioral data

For the 60 target episodes of the experiment, the mean accu-
racy across all participants was 0.63 (SE: 0.044) (Fig. 4). For
the non-target episodes, the mean accuracy across all par-
ticipants was 0.98 (SE: 0.002). These are not used for our
classifier. Participants made significantly more errors on the
target episodes than on the non-target episodes (theWilcoxon
signed-rank test, p < 0.05), which is consistent with prior
work [43]. For the post-survey, the mean level of focus par-
ticipant reported was 4.45 (SE: 0.35, scale of 1–7), and the
mean frequency of unrelated thoughts and drowsiness was
4.18 (SE: 49) and 4.18 (SE: 0.45), respectively (converted to
scale of 1–6 from ‘never’ being 1 to ‘very frequently’ being
6). This shows that participants experiencedmind-wandering
states during the study.

5.5 Dataset overview

For the overview of the dataset, we calculated the folded
average of oxygenated hemoglobin (HbO) and the deoxy-
genated hemoglobin (HbR) change across all participants for
the on-task (correct) and mind-wandering (incorrect) target
responses. Specifically, we calculated the folded average of
all long-separation channels on the left side of the head and
all long separation channels on the right side of the head
separately. From Fig. 5, we can see the average change in
HbO from the right side of the cortex showed a significant
increase during 30–15s prior to an incorrect response to the
target, followed by a decrease before the target. From the
left side of the cortex, there was a slight increase in HbO
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Fig. 5 Variation of the oxygenated hemoglobin (HbO) and deoxy-
genated hemoglobin (HbR) concentration for the mind-wandering
episodes (SART error, in blue) and on-task episodes (SART no error,
in green). The figures show the mean (averaged across individuals) and

standard error over the 40s. The figures on the left are data from the
sensor on the left side of the head, and the figures on the right are data
from the right side of the head. Shaded areas represent the standard
error of the mean for each condition

change around 25–15s before a target error and then return
to normal. The average change in HbR on the left side of
the cortex showed a slight decrease around 10s before an
incorrect response to the target. The average change in HbR
on the right side of the cortex showed a decrease around 15s
before an incorrect response to the target and followed by an
increase immediately before the target.

Consistent with prior findings [14,19], our results sug-
gest there are differences in frontal lobe blood oxygenation
patterns between mind-wandering episodes and on-task
episodes. Also, our results indicate activation in the pre-
frontal area preceding mind-wandering occurrence, as the
level of HbO increases on both sides of the prefrontal cor-
tex before SART errors. This is consistent with the findings
of previous investigations, which suggest that the prefrontal
area contributes to the switching from an on-task state to
mind-wandering [14,19]. In contrast with the previous find-
ings of Durantin et al. [19], where they found no significant
variations on the HbR relative to incorrect responses to the
target, our results showed a decrease on both sides of the
cortex before incorrect responses to the target. Since both a
decrease in HbR and an increase of HbO indicate cerebral
activation, our results are consistent and suggest activation

at the prefrontal area at the beginning of mind-wandering
episodes.

Moreover, from Fig. 5, we can see that the time series
behaviors of the hemodynamic patterns are different in dif-
ferent windows during the mind-wandering episodes. In the
next section, we investigate window selection for detect-
ing mind-wandering and develop a data-driven classification
framework.

6 Data-driven classification framework

Using the fNIRS dataset that we built and validated above
with mind-wandering episodes and on-task episodes, we
develop a data-driven classification framework for detecting
mind-wandering.

In this section,we investigatewindowselectionwhen clas-
sifying mind-wandering episodes versus on-task episodes
using fNIRS data, with the goal of improving the classifica-
tion accuracy. In addition to individual-level classification,
we also explore the feasibility of building machine learn-
ingmodels across participants for detectingmind-wandering.
We evaluate the window selection method by comparing the
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Fig. 6 Structure of the ITWS algorithm. The dataset (episodes of 40s)
of each participant is divided into k folds. In each fold, k − 1 folds
of the dataset are used to find the best window for classification, and
the data from this window of these k − 1 folds are later used as train-
ing data for the group-level classifier. The data from the same window

of the remaining fold are used as the test data to evaluate the classi-
fier. For each participant, a moving window method combined with an
individual-level classifier was used to obtain the best window, which
has the best cross-validation results

results with the same classifiers, but without window selec-
tion.

6.1 Individual-level classification

We start with building models for each participant to classify
mind-wandering episodes versus on-task episodes. The goal
is to determine if the window selection method can improve
the individual-level classification accuracy.

6.1.1 Moving windowmethod

We use the moving window method to find the best sub-
window. The moving windowmethod iterates through all the
windowswith a specific size during a period, and then all data
processing is performed separately on each timewindow, i.e.,
feature extraction and classification. Therefore, the moving
window method requires a predefined window size and a
step size. To investigate the effect of the window size on
classification results, we use three differentwindow sizes that
are commonly used in previous fNIRS studies [24,44,59],
which are 5 s, 10 s, and 15s. For each of the window sizes,

we use a 1 s step size [59]. The best sub-window is defined
as the window with the best classification result.

6.1.2 Individual-level classifier

Because of its simplicity and low computational require-
ments, linear discriminant analysiswith shrinkage (shrinkage
LDA) is commonly used as the classifier in fNIRS stud-
ies [46]. Particularly, shrinkage LDA has shown advantages
when dealing with datasets with a small sample size and a
large number of features [57]. LDA uses discriminant hyper-
plane(s) to separate data fromdifferent classes [3]. It assumes
the class covariance are identical and then models the class
conditional distribution of the data for each class. However,
with a small sample size, the number of features of each
sample could exceed the number of samples in each class. In
this case, the empirical sample covariance is a poor estimator
[37]. Using a shrinkage estimator of the covariance matrix
can help solve this issue [1]. In this study, considering the
small sample size for each participant, we use the shrinkage
LDA as the individual-level classifier.

From Fig. 4, we can see that for most participants (ten out
of eleven participants), the dataset is not balanced between
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the two classes.Most participants had fewermind-wandering
episodes compared to on-task episodes. To avoid the bias of
training the classifier towards one class, we use the synthetic
minority oversampling technique (SMOTE) to balance the
training data for each participant. SMOTE is an oversampling
method that has shown effectiveness in many imbalanced
datasets. It can generate new synthetic examples by find-
ing the nearest neighbors of the examples from the minority
class [11]. This oversampling method is used only during the
training process.

All long-separation channels are used to build the clas-
sifier for each participant. The average values of HbR and
HbO and the slope over the moving time window are used as
features [49]. Each feature is normalized.

Then, in combination with the moving window method,
we apply shrinkage LDA to build individual-level classifiers
and find the best window for classification.

6.2 Group-level classification

Individual-level classifiers often rely on a relatively small
dataset with high feature space, which could lead to model
overfitting. Group-level models can solve this issue by train-
ing on data collected from all participants. However, it is
difficult to achieve high accuracy on group-level models due
to individual differences. We propose an individual-based
time window selection (ITWS) algorithm to improve the
group-level classification results.

6.2.1 ITWS algorithm

When using the window selection method, the best windows
could vary between different participants. If we use the stan-
dard moving window method to build group-level classifiers
across individuals, then data from the samewindows from all
individuals will be used to build and evaluate the classifier.
However, since the best window could vary for different par-
ticipants, using the standard moving window method could
lead to suboptimal classification results.

We propose a novel individual-based time window selec-
tion (ITWS) algorithm to select the best window for each
individual when building the group-level classifier. Figure 6
shows the structure of the algorithm. The main principle of
the ITWS algorithm is to use an embedded individual-level
classifier to determine the best window for each participant.
The embedded individual-level classifiers are used in com-
bination with the moving window method and are applied
on the entire episode. Data from each participant are first
separated into two blocks (training data and test data for
the group-level classifier). Then, the embedded individual
level classifiers are trained and evaluated only on one block
(embedded k-fold cross-validation).

Algorithm 1 Individual-based time window selection
(ITWS) algorithm
1: Initialize Divide the dataset of each participant into k folds. k-1

folds of the dataset are used as the training data and to obtain the
best window for this specific participant, and the remaining one fold
is used as the test data. Set the group-level training data and group-
level test data to empty

2: for current k in k-fold cross-validation do
3: for participant in all participants do
4: Generate all moving windows by sliding the window on the

data from the k-1 folds
5: for window in all moving windows do
6: Use embedded subject-level classifier to obtain the classi-

fication score on this window (embedded k-fold cross-validation)
7: end for
8: Select the best window by finding the maximum cross-

validation score from all moving windows
9: Add the data from the best window from the k-1 folds to the

group-level training data
10: Add the test data from the best window from the remaining

fold to the group-level test data
11: end for
12: Train the group-level classifier on the group-level training data
13: Obtain the test results by applying the group-level classifier on

the group-level test data
14: end for
15: Calculate the average test result after k-fold cross-validation.

To effectively assess the performance of the machine
learning models, the algorithm can be used together with k-
fold cross-validation for the group-level classifier. The flow
of the ITWS algorithm is described in Algorithm 1. Specif-
ically, for k-fold cross-validation, we first divide the dataset
(episodes of 40 s) from each individual into k folds. Then,
during each fold, k − 1 folds of the dataset are used to find
the best window for classification. The data from this win-
dow of these folds are later used as the training data for the
group-level classifier. The data from the same window of the
remaining fold are used as the test data to evaluate the group-
level classifier. We repeat this procedure for all individuals.
At each fold, training data from all individuals together are
used to train the group-level classifier, and test data from all
individuals are used to evaluate the classifier. The test result
from all folds are then averaged to give the final mean test
results.

6.2.2 Embedded individual-level classifier and group-level
classifier

We use the shrinkage LDA as the embedded individual-level
classifier as described in Sect. 6.1.2 (line 6 in Algorithm 1).
Also, similar to individual-level classification, we examine
the effect of window sizes by using 5s, 10 s, and 15s as the
window size for the moving window method.

Comparing to individual-level classification, the group-
level classification can be trained on a larger dataset from
all participants. Therefore, we aim to use modern machine
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learning models that take advantage of the larger sample
size. Modern machine learning models, including XGBoost
and deep learning techniques, have achieved state-of-the-art
results on many machine learning problems [12,22,65], and
have shown promise for fNIRS data classification [23,26].
Therefore, to evaluate the performance of the ITWS algo-
rithm, we use Deep Neural Networks (DNNs), Convolution
Neural Networks (CNNs), and XGBoost as the group-level
classifier (line 12 in Algorithm 1).

XGBoost is a gradient tree boosting system that builds
trees sequentially, such that each subsequent tree learns from
its predecessors to reduce the errors of the previous tree [12].
Specifically, a greedy algorithm is used in the model, which
starts from a single leaf, and iteratively adds branches to the
tree by evaluating every possible split loss reduction. The
ensemble model gives the aggregate output from all trees. To
prevent overfitting, we set the learning rate to be 0.01, the
maximum depth of a tree to be 4, the number of estimators
to be 200, and the subsampling ratio of training instance
subsample to be 0.8.

A DNN is a layered organization of connected neurons.
Between the input and output layers, there are multiple
hidden layers. During each hidden layer, each neuron is asso-
ciated with a weight that is used to compute the weighted
input. Theweighted inputs are then summed and transformed
by the activation function to determine the output of the neu-
ron. By adjusting the weights of neurons, DNNs can model
complex non-linear relationships between the input and out-
put [22]. In this work, we use a network consists of three
hidden layers with rectified linear unit (ReLU) activation
function. Each hidden layer has 300 units, 100 units, and
40 units, respectively. We implemented an optimizer using
RMSprop with a learning rate of 0.01.

CNNs are neural networks that use convolutions over the
input layer. The hidden layers of a CNN typically consist of
a series of convolutional layers, ReLU layers, and pooling
layers. By performing specific functions, each layer learns
a useful representation from the input [65]. In this work,
our CNN architecture has three convolutional layers, which
consist of 32 filters of size 3 × 1, 64 filters of size 3 × 1,
and 64 filters of size 5 × 1, respectively. Each of them is
followed by a batch normalization layer and a ReLU layer.
Then, a max-pooling layer and a dropout layer are utilized to
prevent overfitting. Finally, a fully connected layer with 64
input neurons and two output neurons is used for the binary
classification.We implemented an optimizer using SGDwith
a learning rate of 0.01.

Similar to individual-level classification (see Sect. 6.1.2),
the samples from the two classes are first balanced using
SMOTE [11]. We used the same features for the embedded
individual-level classification and group-level classification,
which include the average values and slope of HbR and HbO
fromall long-separation channels. Each feature is normalized

as well. All features are then used as the input for XGBoost
and DNNs. For the input of CNNs, features of each channel
are concatenated into a 2D matrix (number of channels ×
number of features).

Then, following the ITWS algorithm, we iteratively
choose the best windows from each individual. Data from
these windows are then used as training data and test data for
the group-level classifier.

7 Evaluation

7.1 Methodology

We evaluate the effectiveness of our window selection
method by comparing the results with the same classifiers,
but without window selection.

For individual-level classification, our research questions
are whether focusing on a specific window will improve
the classification results, and whether the window size of
the moving window method can affect the classifier’s per-
formance. Therefore, we compare the classification results
achieved using the moving window method with 5 s, 10 s,
and 15s as the window size, as well as with the classification
results achieved using the entire episodes.

For group-level classification, our research questions are
whether the ITWS algorithm can improve the group-level
classification results, and whether the choices of window
sizes and classifiers can affect its performance. Therefore,
when XGBoost, DNNs, and CNNs are used as the group-
level classifier,we compare the classification results achieved
using the ITWSalgorithmwith classification results achieved
using a standard moving window method, as well as using
the entire episodes. Specifically,we compare the resultswhen
5s, 10 s, and 15s are used as the window size for the moving
window method.

Due to the imbalance in our dataset, the test accuracy of
the classifiers could be misleading. Therefore, we report F1-
scores of our classifiers. F1-scores are commonly used to
account for dataset imbalances. We also use 5-folds cross-
validation to assess the performance of the classifiers.

7.2 Results

7.2.1 Individual-level classification using moving window

Figure 7a shows comparative results of maximum F1-score
achieved using the moving window method, with the win-
dow size of 5 s, 10 s, and 15s, respectively, and the F1-score
achieved using the whole episode. We can see that, for
all participants, the maximum F1-scores achieved by using
the moving window method with all three window sizes
are significantly higher than the F1-score achieved when
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Fig. 7 a Comparison results of maximum F1-score achieved using
the moving window method (with 5 s, 10 s, and 15s as the window
size) and the F1-score achieved using the whole episodes (5-fold cross-
validation). b Classification results for 5 s moving windows for each

individual over the 40s time period, the x-axis indicates the right edge
of the moving time window. The F1-score represents the mean F1-score
of the 5-fold cross-validation on each window

using the whole episodes (Wilcoxon signed-rank test, p <

0.05). When using the whole episode, only four participants
achieved an F1-score over 60%. The average F1-score for all
participants was 52.1± 3.0%. When using moving the win-
dowmethod with different window sizes, the window size of
5 s achieved the highest average value (74.8± 2.0% ) for all
participants’ maximum F1-score, while the average values
for all individuals’ maximum F1-scores are 70.0±2.8% and
70.2±3.0% with window sizes of 10 s and 15s respectively.
Particularly, for each individual, six out of eleven participants
achieved amaximummean F1-score when using the window
size of 5 s, while two and three participants achieved a maxi-
mummean F1-score when using the window size of 10 s and
15s, respectively. Furthermore, Fig. 7b shows the F1-score
for the moving windows for each participant with the win-
dow size of 5 s. For each participant, we can see that themean
cross-validation F1-score varies for different windows.

These results suggest that for each participant, focusing
on a specific window can achieve better classification results
than using the whole episode. Also, the window size of the
moving window method can slightly affect the classification
results for different participants.

7.2.2 Group-level classification using the ITWS algorithm

Table 1 represents the F1-score achieved for group-level clas-
sification with different classifiers, when using the ITWS
algorithm, the standard moving window method, and using
the whole episodes as input respectively. We can see that the
ITWS algorithm greatly improved the group-level classifica-

tion results with all three different window sizes (5 s, 10 s,
and 15s), as well as with all three classifiers. Particularly,
for different window sizes, applying the ITWS algorithm
with the window size of 5 s achieved the highest perfor-
mance. This is easy to understand since most participants
achieved the best individual-level classification results when
using the window size of 5 s (see Sect. 7.2.1). Specifically,
when using the ITWS algorithm with a window size of 5 s
and with XGBoost as the group-level classifier, we achieved
the highest average F1-score of 73.2 ± 2.0%, while CNNs
and DNNs achieved an average F1-score of 72.8 ± 0.13%
and 69.4 ± 0.08% respectively. Also, it is worth noting that
even with the window size of 10 s and 15s, for all classifiers,
the ITWS algorithm achieved superior performance than the
standard moving windowmethod, as well as using the whole
episodes as input. Therefore, we can conclude that the pro-
posed ITWS algorithms can improve the classification result
for detecting mind-wandering episodes across-participants
using fNIRS, and is generally not affected by choice of win-
dow sizes and classifiers.

To further investigate the effectiveness of the ITWS algo-
rithm, we analyzed the selected windows for each participant
by using the ITWS algorithm with a window size of 5 s. Fig-
ure 8 shows the distribution of the right edge of selected
time windows for each individual during the 5-fold cross-
validation. For each individual, the box shows the quartiles
with the inner line indicating the mean value. The whiskers
extend to show the rest of the distribution, and the points
are the outliers determined as a function of the inter-quartile
range. Even though the selected best window for each indi-
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Table 1 Comparative results of
using the ITWS algorithm, the
moving window method, and
using the whole episodes for
group-level classification (5-fold
cross-validation)

XGBoost CNNs DNNs

Whole episodes 45.4± 0.80 52.6± 0.14 48.8± 0.12

Moving window method (5 s window) 57.0± 0.31 60.5± 0.13 55.2± 0.24

Moving window method (10s window) 52.3± 0.42 58.8± 0.22 52.5± 0.70

Moving window method (10s window) 51.6± 0.36 59.5± 0.53 54.6± 0.68

ITWS algorithm (5s window) 73.2± 0.18 72.8± 0.13 69.4± 0.08

ITWS algorithm (10s window) 70.1± 0.10 72.4± 0.06 68.7± 0.11

ITWS algorithm (15s window) 71.3± 0.21 70.7± 0.07 66.3± 0.07

The F1-score of the moving window method represents the maximum F1-score
Bold signifies the highest F1-score in comparison of the parameters

Fig. 8 The distribution of the selected best windows (the right edge)
for each individual during the 5-fold cross-validation, when using a
window size of 5 s. 0 s represents the timing of the targets

vidual varies during each fold, we can still see there are
individual differences related towindow selection. For exam-
ple, the selected best windows for individual P03 concentrate
around 20s before the target, while the selected best window
for individual P10 centered around 5s after the target. Also,
while some participants show a broader spread of window
selection than the others, the classification results for test data
from each participant did not show any differences. These
findings further confirm that the proposed ITWS algorithms
can incorporate individuals’ differences in window selection
and ensure the best window for classification for each indi-
vidual is used to build the final classifier across individuals.

8 Discussion

Our study aimed to build classifiers based on fNIRS data to
detect whether an individual is mind-wandering or focusing
on-task. To build a dataset for exploration, we conducted a
study using fNIRS during the SART task. The errors during
the task are correlated with mind-wandering [43]. Consis-
tent with previous findings, we showed individuals made a

higher number of errors for the target than non-target trials.
We also showed activation in the prefrontal cortex during
mind-wandering episodes, as the changes of HbO increase
and the changes of HbR decrease before the targets with
incorrect responses. All individuals retrospectively reported
mind-wandering during the task in the post-survey.

For classification, we labeled the target episodes (30 s
before the target and 10s after the target) with a correct
response as the on-task episodes, and we labeled the tar-
get episodes with incorrect response as the mind-wandering
episodes. Particularly, we investigated window selection
during the episodes when building classifiers both on an
individual-level and group-level.

Compared to the previous state of the art in terms of
brain-based classification of mind-wandering [19,32], our
proposed approach achieved significant improvement. Previ-
ous work using EEG to predict task-general mind-wandering
achieved a mean accuracy of 64% [32], while prior work
using fNIRS for mind-wandering classification achieved a
mean accuracy of 56% [19]. Our results suggest that focusing
on a specific window can improve the classification results
for individual-level classifiers. For group-level classification,
we proposed a novel algorithm to incorporate individuals’
differences in window selection. We show that when using
the XGBoost as the group-level classifier and 5s as the win-
dow size, the proposed ITWS algorithm achieved a mean
F1-score of 73.2%. Moreover, we show that even though the
window size can slightly affect the individual-level classifi-
cation results for different participants, the performance of
the ITWS algorithm is generally not affected by choice of
window sizes. Also, our results show that the ITWS algo-
rithm can improve the classification results when used with
different classifiers (XGBoost, CNNs, and ANNs).

Our findings have important implications for designing
and evaluating engaging and effective learning interfaces,
as well as building attention-aware systems that can auto-
matically detect mind-wandering states using fNIRS. For
real-time applications, labeled brain data is required to train
the classifier, which can then detect the activation at the
prefrontal area associated with mind-wandering. However,
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the classification of mind-wandering is a challenging task.
Different windows during mind-wandering episodes exhibit
different time series behavior for each individual. As such,
machine learning models trained on different windows of the
labeled data can have different classification performance.
Our classification methods serve the role of finding the best
windows of training data for real-world applications. Clas-
sifiers trained on these windows can then be used to predict
the label of real-time data. To do so, the first step is to collect
labeled brain data from individuals. Then, the ITWS algo-
rithm can be used to incorporate individuals’ differences in
window selection and determine the best windows for build-
ing the final classifier.

Our results show that the spread of selected windows
varies a lot for some participants during cross-validation
while applying the ITWS algorithm. This could be due to the
overfitting of the individual-level classifiers since the dataset
for each participant is small. Therefore, even though the clas-
sification results for test data from each participant did not
show any differences in our work, further work that explores
methods for more robust window selection can potentially
improve the overall group-level classification results.

A limitation of this study is the mind-wandering episodes
are inferred from behavioral responses and explicit reports
of mind wandering. We aimed to avoid interrupting the
mind-wandering episodes and therefore chose to deter-
mine mind-wandering episodes by SART errors, instead of
using experience sampling probes. While previous research
supports that SART errors are linked to mind-wandering
[38,43,60], there is also research suggesting that SARTerrors
could be related to impulsivity in individuals’ responses [19].
Therefore, further investigation using experience sampling
protocols and analyzing the window selection during the
mind-wandering periods would be needed to confirm our
findings.

9 Conclusion

In this paper, we investigated window selection for classi-
fying mind-wandering episodes and on-task episodes using
fNIRS. The proposed classification framework is data-driven
and enables a more accurate detection of mind-wandering.
The findings from this study also reveal individual differ-
ences in window selection for mind-wandering detection.
This work could inform further research about the time
course aspects of mind-wandering, and it builds a founda-
tion for both evaluation of multimodal learning interfaces
and future attention-aware systems based on fNIRS data.
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