
ThuMouse: A Micro-gesture Cursor Input through
mmWave Radar-based Interaction

Ziheng Li, Zhenyuan Lei, An Yan, Erin Solovey, and Kaveh Pahlavan
Worcester Polytechnic Institute, Massachusetts, USA

zli12, zlei3, ayan, esolovey, kaveh@wpi.edu

Abstract—In this paper, we propose ThuMouse, a novel inter-
action paradigm aimed to create a gesture-based and touch-free
cursor interaction that accurately tracks the motion of fingers
in real-time. ThuMouse enables users to move the cursor using
frequency-modulated continuous-wave (FMCW) radar. While
previous work with FMCW radar in human-computer-interfaces
(HCI) has focused on classifying a set of predefined hand gestures,
ThuMouse regressively tracks the position of a finger, which
allows for finer-grained interaction. This paper presents the
gesture sensing pipeline we built, with regressive tracking through
deep neural networks, data augmentation for robustness, and
computer vision as a training base. We also report on a proof-
of-concept demonstration shows how our system can function as
a mouse, and identify areas for future work. This work builds a
foundation for designing finer micro gesture-based interactions,
allowing the finger to emulate external input devices such as a
joystick and touch-pad.

Index Terms—Millimeter Wave FMCW Radar; Micro-gesture
sensing; Interaction; Deep Learning

I. INTRODUCTION

With interaction continuously moving away from desk-
top to mobile, also with hands-free gadgets such as virtual
reality (VR), Augmented Reality (AR) gaining popularity,
the demand for efficient and compact interaction methods is
ever necessitated. In this decade, radio-frequency (RF) based
interfaces have been investigated. Many proposed systems
leverage channel information from existing infrastructure such
as commodity WiFi [4] and Radio-frequency identification
(RFID) [7] to detect human activities and gestures. Under
the umbrella of 5G standards that are taking shape recently,
wireless technologies are sought to possess increased speed,
reduced latency, and to become more energy-efficient and cost-
effective. Among the various new standards, mmWave radar’s
Frequency-Modulated Continuous-Wave (FMCW) variant cap-
tures the spatial and temporal information of objects by
transmitting a continuous wave modulated in a frequency
range. The dynamic profile given by the device, thank to the
high signal frequency (usually greater than 60GHz) as well-
established processing chain [13] [8] is remarkably precise
and capable of achieving sub-millimeter accuracy. In addition,
the sensor’s feature is relatively light-weight compared to
other gesture input methods such as computer-vision based
approaches.

Overall, mmWave sensors presents numerous advantages as
a gesture sensor, including their characteristic environment-
independence, compact size, and low cost both computation-
ally and monetarily, making them candidates upon which

Fig. 1. Processing pipeline of ThuMouse. During a dynamic gesture, the
radar device picks up the reflected signal from parts of the hand, recorded
as raw input matrices. Detected points are extracted and rasterized into voxel
space as deep learning features. The regressor interprets the x-y-z coordinates
of the thumb-tip and produces cursor-like interaction.

novel gesture schemes can be established. In this regard,
prior work includes earlier work by Arbabian et al. [1] on
high-frequency pulse-band radar, and more recently, Texas
Instruments mmWave sensor [13] and Google ATAP’s Project
Soli [8] have contributed to the design of solid-state mmWave
FMCW sensors applications around them.

In this paper, we describe the design and evaluation of
a novel gesture paradigm enabled by mmWave sensing; the
system overview is featured in Fig 1. This work demonstrates
that a viable ubiquitous gesture interface can be established
by integrating mmWave technology into everyday electronics
such as smartphones, smartwatches, and laptops. For example,
the rub motion of the thumb against the index finger can
be interpreted as a volume control for movement along a
single axis, and mouse movement if the displacement is 2-
dimensional. This gesture sensing approach has implications
for many applications such as automotive applications [11],
VR headsets, etc.

Our main contributions are: (1) By leveraging the sensing
ability powered by the signal processing chain from [13], we
detect the spatial position of objects as well as their velocity,
making it possible to track the finer gesture. (2) We describe
the design of real-time tracking with an end-to-end gesture
pipeline using the radar point cloud combined with several



data augmentation methods to enrich the feature and build
more robust models. (3) We illustrate the implementation
and evaluation of 3D Convolutional Long-short-term-memory
(LSTM) deep learning model the processed the radar point
cloud data (PCD) to achieve the motion tracking and gesture
classification. (4) We propose a dual-input training system uti-
lizing computer vision (CV) to automate labeling the tracking
information.

II. BACKGROUND IN MMWAVE-GESTURE

As a sensing technology, mmWave FMCW radar possesses
high resolution in capturing motions, and for the purpose of
this paper specifically, human gestures. In the literature review,
we studied (1) prior work that built radar-based interfaces, (2)
machine learning algorithm used for gesture detection.

Early work [12] [1] laid a hardware and signal processing
foundation in utilizing mmWave in gesture detection. More
recently, Soli [8] [2] [5] [6] brought it into the context of
micro-gesture sensing, wearable, and smart devices. In this
setting, gesture interface presents many-faceted possibilities:
Soli introduced the idea of virtual tool and proposed the
Soli 60-GHz mmWave FMCW radar to track the fine-grained
gestures, capable of detecting 4 gestures from a single user
[8] . On the other hand, prior work [11] implemented car
infotainment interaction with the sensor [8] able to distinguish
two sets of gestures with each containing three different
motions.

In detecting different gestures, traditional machine learning
approach such as random forest [8] [11] and Support Vector
Machine (SVM) [17] have been used. In recent years, deep
learning has shown great potential in performing through its
capability to learn intermediate representations of raw data and
has been shown to routinely beat traditional machine learning
methods [2].

Wang et al. investigated the use of deep learning models
in resolving the dynamic profile of various gestures given
by mmWave sensors [2]. Namely, the features used are the
range-velocity map on a per-frame bases. Noting the fact this
type of feature is essential a 2D image-like array, Wang et al.
[2] applied Convolutional Recurrent Neural Network (CRNN),
typically used for video classifications and arrived at accuracy
of 87% on 11 gestures across multiple subjects.

While these approaches have shown promise, we summarize
the limitations as follows: (1) Compared to capacitive sensing
or optical sensors, mmWave radar lacks spatial resolution
due to the fact that the reflected signals are superimposed;
albeit this is offset by the high temporal/velocity resolution
and highly sophisticated prediction model. Because of this,
distinguishing similar gestures suffers because the moving
parts (i.e. specific fingers) reside in close proximity to each
other. (2) Current approaches feed to the machine learning
model the raw analog-to-digital converter (ADC) output with
minimal pre-processing. The resulting data profile is usually
a range-velocity image of the object in front of the radar.
This data can vary across different platforms in their size
and resolution, which calls for domain specific predicting

models. In contrast, image data from cameras possess much
more generality. (3) Moreover, the high throughput of data
taxes the hardware to be able to achieve real-time gesture-
recognition; the processing pipeline must be limited in its
complexity, where input accuracy must give away for the
real-time interaction. (4) The features given by mmWave
devices are relatively unique compared with other sensing
technologies, which makes it difficult to adapt existing pre-
processing and predicting methods.

III. SYSTEM ARCHITECTURE

In this section, we review principles of the FMCW radar that
allow the recognition of physical information about objects.
We discuss the detection accuracy of mmWave sensors and
the parameters affecting performance. We also discuss the
hardware used for this study and the radar signal we designed
specifically for micro-gesture sensing.

A. Point Detection

1) mmWave Sensing Principles: The mmWave FMCW
radar detects an object through the principle of reflection.
During each sampling period, the transmitter (Tx) sends a
chirp, which is a signal with its frequently changing over time.
The transmitted signal is then mixed with the reflected signal
picked up by the receiver antennas (Rx);

XTX = sin[ωTX × t+ φTX ] (1)

XRX = sin[ωRX × t+ φRX ] (2)

Xout = sin[(ωTX − ωRX)× t+ (φTX − φRX)] (3)

From the above equations, we can get the intermediate fre-
quency (IF) signal by combining the TX signal and RX signal.
The IF signals only valid during the chirping time (i.e. when
the Tx signal is present). The Fast Fourier Transform (FFT)
is performed on the IF signal. The frequency peaks then
correspond to the distance between the radar and the reflecting
object. This FFT is known as 1-dimension FFT (1DFFT).

Fig. 2. The analog to digital converter (ADC) data is extracted from
the intermediate frequency (IF) signals and the points become rows of
the 2 dimensional matrix. Using the range-FFT on each row, the range
information is calculated and a Doppler-FFT on the column provides the
velocity information [13]



On top of the first FFT over a single chirp, which resolves
the range, the radar emits a series of chirps in quick succession
as depicted in Figure 1. Through a second FFT (2DFFT) over
the IF signal for those multiple chirps, the radial velocity (the
velocity of the object relative to the sensor) of objects can
be obtained. The detecting power of mmWave radar, when
resolving the radial range and velocity, is defined by two
resolutions: range resolution and velocity resolution. Range
and velocity resolution is given by the following equations:

Rangeres =
C

2× FB
(4)

where C is the speed of light (3×108) and FB is the frequency
band with which the chirp sweeps. For 4GHz of chirp band,
it gives 3.75cm range resolution.

V elocityres =
λ

2Tf
(5)

where λ is the wavelength of the chirp starting frequency
and Tf is frame time which equals to the number of chirps
times the duration of a single chirp. If the radial distance
between two reflecting point is less than the range resolution,
the radar would identify the two as a single detected point,
and likewise for velocity. Note that because the velocity is
calculated after determining the range, closely places objects
(pairwise distance no greater than the range resolution) can
still be distinguished as different objects if the difference in
their velocity is larger than the Vres.

This is the key to gesture detection with FMCW radars,
as the fingers usually reside within Rres, but during dynamic
gestures, fingers or parts of the hand typically move at different
speeds relative to each other. This creates a dynamic profile
which provides a fertile feature space for micro-gesture study.

With this, we are able to detect objects with their radial
range and velocity. Now, with multiple chirps being received
by the Rx, the angle of a reflecting point is entailed by the
phase change in the IF signal across different Rx’s. Moreover,
with antennas arranged both horizontally and vertically, the
sensor, with a 3DFFT over the bins obtained across different
Rx’s, is able to resolve the angle of arrival (AoA) on both
azimuth and inclination plane.

The angle resolution equation is as follows:

θres =
λ

N × d× cos(θ)
(6)

where d is the spacing between Rx antennas, and θ is the angle
of objects. The equation signifies that θres is non-linear. As the
function sin(θ) is the most sensitive when theta is around zero
degrees, the sensor gives the best angle discrimination when
the object is directly in front of the radar (i.e. θobject = 0). As
θ increases and approaches 90 degrees, the angle estimation
accuracy degrades as the sin(θ) value does not change much.

With the radial range, angles including azimuth and incli-
nation, and velocity, the points are essentially velocity heat-
map in 3D polar coordinates. Thus, the dynamic profile that
the sensor yields is a list size-4 vectors (r, θ,Φ, doppler),

each representing a detected point, where r is the radial range
between the point and the original (where the radar is situated),
θ is the inclination or vertical angle, and φ is the azimuth or
the horizontal angle.

To summarize, the reflecting points must satisfy the follow-
ing pairwise conditions to be seen by the radar: (1) The radial
distance (relative to the radar) between to reflecting surface is
greater than Rres. (2) if (1) is not satisfied, then the difference
in radial velocity of the two points must be greater than Vres.
(3) if (2) is not satisfied, the angle between the two points
must be greater than the θres.

In dynamic gesture capturing, the motion is considered to
be more crucial compared to static hand shapes. Meanwhile,
in order to eliminate other static environmental noise (from the
arm, floor and walls), Clutter Removal is applied at the end of
second FFT which calculates the velocity [13]. It also abates
the computation load as the static points are removed from all
the radar frames. By subtracting the mean from the S2DFFT ,
most immobile objects are removed from the samples.

S2DFFT = S −mean(S2DFFT ) (7)

where S2DFFT is the bin formed by 2DFFT and S are each
sample in S2DFFT .

To be able to further manipulate the point cloud data such as
transformations, we perform a Polar to Cartesian Coordinates
conversion as the last step in the point processing pipeline.

x = r × sinθ × cosφ
y = r × sinθ × sinφ

z = r × cosθ
(8)

where the x, y and z are the Cartesian coordinates of the
detected point. Their unit are in meters.

2) Signal Design for Gesture Application: The Understand-
ing of the above resolution equations (4)(5)(6) is crucial when
devising suitable signal shape for the gesture recognition. It
defines several key points in using mmWave as a gesture inter-
face (1) To detect fine-grained gestures, range resolution needs
to be reasonably small so that the structure of the hand will be
distilled in the feature space. (2) Dynamic gesture recognition
requires a high degree of temporal (velocity) resolution [8]. (3)
Moreover, to reduce ambiguity on the angle of arrival (AoA),
the gesture-performing area should be aligned with the central
axis perpendicular to the antenna module.

However, it is out of the scope of this paper to compare
how different hyper-parameters affect the precision of tracking.
Without an in-depth analysis of tuning signal configuration and
with consideration on hardware limits, we apply

FB = 4GHz Fstart = 60GHz

Fend = 64GHz Tf = 20mesc
(9)

with 30msec inter-frame delay for processing, which gives a
frame rate of 20FPS, Rangeres=3.75cm, Velocityres=0.12m/s
An extension of this work can be made on studying the how
the parameters affects the detecting precision of mmWave
sensors.



3) Hardware: Our system is based on the IWR6843 de-
signed by Texas Instrument, an integrated single-chip based
on the FMCW technology and the frequency is modulated
between 60 to 64 GHz. Benefiting from the on-board digital
processing unit and hardware accelerator aimed at quickly
computing FFT and resolving log-magnitude operations, it can
detect, at a relatively high frame rate (20 FPS), the spatial
coordinates (range angle) and velocity of objects.

IWR6843ISK is an antenna module that falls under the line
of the IWR6843 mmWave sensor device. It has a long range
on-board antenna with 108◦ azimuth field of view (FoV) and
44◦ inclination FoV. MMWAVEICBOOST provides a platform
for the rapid evaluation.

B. Gesture Detection

The software gesture pipeline starts with detected points,
which represent the objects in front of the radar. The points
are extracted by the pipeline explained in the last section and
from there, our system extracts finer features of the dynamic
gestures. In this section, we cover the pre-processing steps in
which the observed points are transformed into deep learning
features. We also discuss the deep learning model that analyzes
the pre-processed feature and how the gesture schemes are
actuated.

1) Point Matrix: The preprocessing step transforms the
detected points into suitable machine learning features for
which a neural network can study. The points are first clustered
and filtered, so that algorithms after this point focus only on
the hand that is performing the gesture. The filtered points
are then rasterized in a 3D voxel space, forming a 3D feature
array.

The pre-processing is performed every time the radar re-
solves a point cloud data collection through the detection
procedure explained in the last section; we call this data
collection a radar frame. A frame at time t consists of n
detected points, defined as n × 4 matrix; each row is the
Cartesian coordinates and Doppler (velocity) of the detected
points. The number n may vary across frames depending on
how the resolvability conditions are satisfied. We can refer to
the matrix as the point array as each row denotes a detected
point.

pt =


x0 y0 z0 doppler0
x1 y1 z1 doppler1
...
...
xn yn zn dopplern

 (10)

2) Clustering: Similar to the static clutter removal at signal-
level by equation (7), ThuMouse further removes dynamic
noise in point-level using the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN). The algorithm iden-
tifies high density areas and expose outliers; in ThuMouse
settings, we define that there must be at least 3 points to form
a cluster and two points need to be at most 20cm apart to be
considered as in the same cluster. These parameters are picked
based empirical observations in our experiments and shown
to perform well in determining the noises and the ’core of

gesture’. For readers interested in the DBSCAN algorithm, we
refer this paper [15] by Sander et al. It explains the detail of the
algorithm. We define the point array after applying DBSCAN
as Pfiltered.

We define the gesture performing area as being within
the radial range of Rbound meters relative to the radar.
Rbound is dependant on the gesture scheme implemented
with the pipeline. For mobile usage, it is reasonable to set
Rbound at 0.25m. We create a bounding volume: x, y, z ∈
[−Rbound, Rbound] around the point cloud to filter out any
points that lie outside the specified range of the radar. To
prepare for Voxelization (the next step in pre-processing), the
spatial coordinates in Pfiltered need to be within the range of
0-1. Therefore, the xyz value are the min-max normalized in
the bounding volume with:

xi =
xi − xmin

xmax − xmin
(11)

The above operation extends to the y and z axis, where the
minimal and maximum values are given by the bounding
volume:

xmin = ymin = zmin = −Rbound

xmax = ymax = zmax = Rbound

(12)

3) Voxelization: As the last step in pre-processing, we
rasterize Ptf iltered into a (25 × 25 × 25) voxel, defined
as V oxelt. This procedure is necessary as the subsequent
convolutional feature extractor only take inputs with fixed
dimensions, and the points array is not acceptable because of
the variable number of rows. On the other hand, convolutional
neural network (CNN) has shown success in extracting and
representing point cloud data if put in voxel form [16].
Because feature Pfiltered at this stage is essentially in point-
cloud format, we take advantage of the convolutional network
structure by voxelizing the detected points.

The units for the three axis are in meters, with Pt being
Min-Max normalized between 0 and 1. The grid of the voxel
has the resolution of 1 centimeter. Additionally, the fourth
column of Pfiltered is the velocity (doppler) of each observed
points. Unlike typical point-cloud voxelization methods [9],
this velocity information is treated as the heat, or color
of each voxel. Overlapping points are added to the voxels
incrementally; i.e., locations where there are more objects
moving would become a hotter spot. The resulting volume
can be interpreted as a 3D velocity heat map, or 3D graph
with a single color channel: velocity. The characteristic of this
features is effectively the same as that of a regular 2D image:
the distribution of the hot spot is non-linear.

4) Data augmentation: Data augmentation methods helps
to increase the amount of relevant training data without
physically collecting more. Moreover, it is shown that CNN
can benefit from data augmentation to become more robust.
In this study, we utilize data augmentation methods [9] [10]
to enlarge our data sets. Namely, a 3-fold data augmentation
is applied on the detected points to form new samples; the
labels (ground truth) for augmented is the same as its non-
augmented counterparts. The three augmentation techniques



being performed are: translation, scale, and rotation, and they
are applied to Pfiltered before the voxalization.

Translation changes the spatial coordinates of the detected
points. It is for simulating an added and small Gaussian noise
to the data. In other words, each point is translated by a
small displacement; the amount of displacement is defined by
the noise distribution which has a mean of 0 meters and a
standard deviation of 0.02 meters. The numbers are derived
from empirical observation for our study case for the noise can
not be too large to modify the original data-set in a substantial
way nor can it be so small that its augmentation value is barely
noticeable.

Scale linearly alters the coordinates of the points along the
x, y, and z axis. The factor used for scaling is the same normal
distribution used in translation. Scale is effectively the same as
Translation for it also changes the location of the each points
in Pfiltered, but instead of introducing noise, it is meant for
simulate individuals with different shaped hands than those of
the participants.

Rotation is used to cover the case where participants may
perform the gesture at varying tilted angle. Although the
subjects are instructed to perform the gesture in a certain
relative position to the radar, the angle of the hand is not
strictly imposed as per real-life scenarios. The rotation is
applied along the three Cartesian axis, and the amount of
rotation follows the same distribution as in the translation and
scale.

Algorithm 1: Data augmentation algorithm applied to
Detected Points

Result: an augmented sample Paug from Pfiltered

if translate then
for pinPfiltered do

translate(p, amount = Gaussian(µ =
0.0, σ = 0.02))

endfor
endif
if scale then

ScaleX(Pfiltered, factor = Gaussian(µ =
0.0, σ = 0.02))
ScaleY(Pfiltered, factor = Gaussian(µ =

0.0, σ = 0.02))
ScaleZ(Pfiltered, factor = Gaussian(µ =

0.0, σ = 0.02))
endif
if rotate then

RotateX(Pfiltered, factor = Gaussian(µ =
0.0, σ = 0.02))
RotateY(Pfiltered, factor = Gaussian(µ =

0.0, σ = 0.02))
RotateZ(Pfiltered, factor = Gaussian(µ =

0.0, σ = 0.02))
endif

5) ThuMouse: ThuMouse is the application we build
around the capability of locating the position of the thumb-
tip. We define ThuMouse gesture follows: user may move his
or her thumb against the planar surface of the index finger.
The temporal displacement of the thumb is reflected in cursor
movement; the gesture is similar to ’Thumb Rub’ [2] [11], but
ThuMouse actually resolves the position of the thumb on the
rubbing surface, allowing for finer-grained controls. In other
words, the thumb tip is playing the role of mouse. The surface
defined by the index finger is emulating the mouse pad, which
is natural, soft and unobtrusive. This gesture can guarantee that
the index finger surface has ample space where the thumb tip
can navigate.

In addition to resolving the x-y coordinate of the thumb-tip
that emulates the movement of a mouse, we introduce the z
axis (perpendicular to the thumbnail) such that if the thumb
leaves surface of the index finger, the tracking would freeze
just as a touch-pad will cease the cursor movement when it
lost contact with the controlling finger. Moreover, the system
interprets click from successive up-and-down motion in a short
time interval.

Fig. 3. ThuMouse gesture is performed with the thumb of the acting hand
pointing at the center of the antennas to achieve best angle resolution

C. Experiment Neural Networks

Dynamic gestures have temporal, as well as spatial char-
acteristics. Therefore, we decided that the network model the
dynamic profile of a gesture needs to contain (1) convolutional
layers that extract the non-linear features of each radar frame,
(2) LSTM cells that retain the features from the frames in
a time regressive manner, (3) dense layers as output that are
adjustable based on given gesture scheme. Moreover, in order
to run the gesture system in real-time, the network should also
be lightweight and low latency for smoother user experience.

To meet the above requirements, we design the following
neural network model as we shown in Fig. 4.

In contrast to work using the Range-Doppler profile as
input [2], ThuMouse’s network model takes in the voxalized
detected points, which include the x, y, z, and velocity. The
detected points can represent the tendency of motion better
which allows a shallower and lighter model to be implemented
without loss in performance.

The input of the network is the voxalized points aforemen-
tioned with the shape (25 ∗ 25 ∗ 25 ∗ 1). The convolutional
layers act as feature extractors to initially interpret the spatial
features of a radar frame; it includes 3D convolutional, batch
normalization, max-pooling layers, and concluded with flatten
layers. To avoid the common problem of ’dead neurons’ in
convolutional layers, we use the leakyRelu activation function
for layers.



Fig. 4. ThuMouse CRNN Architecture: the input layer reads the voxalized detected points from the mmWave sensor; 3D convolution is then performed on
the 3D volumes to produce the feature map which is feed into LSTM layers. LSTM cells propagate information into fully connected layers and outputs the
x, y and z as tracked position of the finger

The condensed features then go through one layer of LSTM
that regressively looks back to the previous 20 timesteps,
(corresponding with the number of frames the system receives
per second). The model culminates with a fully connected
layer where it gives the tracked position of the thumb tip in
its spatial coordinates (x, y and z).

In order to decrease the over-fitting effect from trained
neurons, we need to make the system more applicable to
generalized situations, such as in the case of a new user. To
do so, we randomly drop nodes trained in the system. With
it, we reduce the output dependency from certain features. We
apply the common practice of dropout here and the rate being
applied to both the LSTM and fully connected layers is 0.5.

D. ThuMouse tracking dual input

Assigning the true x, y, and z location (ground-truth) to
the radar frames is more challenging to carry out. To achieve
frame-level tracking, the absolute coordinates of the thumb
tip needs to be obtained as the ground truth with fits to the
model’s output layer. The ThuMouse needs to resolve how
much the cursor moved at each radar frame, given that the
radar is capturing detected points at 20 FPS, manually labeling
the data is obviously out of the question.

1) Computer Vision as Training Base: Inspired by Huang
et al. [3], we use a double input apart from the mmWave
sensor that we are experimenting with. However, our design
of the gesture disallows the presence of another device in
its performing area. We evaluated a number of alternative
ground-truth observers such as an accelerometer mounted on
the thumb. But any wearable device will introduce bias in the
signal shape received by the radar device.

Our solution for this problem is to use webcams and the
radar as dual inputs in recording the thumb’s movement. Com-
pared with many other options, a camera has the advantage of
being a physically unintrusive observing device and the recent
advancement in video-based convolutional neural networks
promises high accuracy. It can help us evaluate the radar’s
tracking performance by analyzing the outputs from each
method. Even though there exists time discrepancy between
the camera’s and radar’s system, the time-stamps of radar are
fully included in camera’s time-stamps. Therefore, we choose
the camera’s tracking as ground truth reference for radar’s
tracking.

2) YOLO Object Detection: To get the location information
of thump tip in each camera frames, we use the YOLO [14].
YOLO is CV-based object tracking algorithm that gives the
”bounding box” of the detected objects. With it, we can eval-
uate the performance of the ThuMouse tracking architecture.

The method is as follows: a YOLO model that identifies
the position of the fingertip is pre-trained with 750 images
from 3 participants from the research group (each select 250
images) with 300 epochs, nearly 20k steps. We observed that
the model thus trained performs reasonably well in noting
where the finger tip is from camera frames.

During a data collection session for ThuMouse, we record
the radar frames along with the two cameras. Then we use the
trained YOLO model to process recorded video frames and
obtain the location information of the fingertip. Because the
frames from both radar and camera are recorded simultane-
ously, we can take the location information of finger-tip from
the cameras as the ground truth for the radar’s estimation. It is
possible that the radar’s timestamp does not match the frames
of the camera due to the fact that the radar operates at 20 FPS



and camera at 30 FPS. Since the goal is to get the location of
the finger for every radar frames, if the timestamp of a radar
frame lays in between the time of two camera captures, we
linearly interpolate the positions given by the two photos to
get the location of the fingertip at the time when that radar
frame is recorded.

The Yolo model is trained with 750 images from 3 users
(each select 250 images) with 300 epochs, nearly 20k steps.
We use this model to predict on recorded video frames and
note the location of the fingertip as given by the CV model.

Fig. 5. YOLO Sample: YOLO algorithm is used to predict thumb tip’s
location with the top and side cameras. The tracked box produced forms the
ground-truth for evaluating the radar tracking performance. Further reading
about YOLO network’s detail in [14]

By comparing the YOLO’s tracking of the fingertip and the
radar’s, we can test and evaluate the performance of the trained
CRNN model.

IV. EVALUATION AND RESULTS

Here we discuss how the ThuMouse system performs. Our
quantitative evaluation analyzes the tracking effectiveness of
ThuMouse by showing the system’s efficacy on the validation
set.

A. Experiment Environment

The experiment environment is set up in a way so that the
radar is always at a same relative position to the cameras.
While the system collects radar frames, videos are streamed
from two webcams, one above the hand to detect the x and y
(cam1) and the other one placed to detect the y and z (cam2),
which are then feed into the Yolo framework to resolve the
true x, y, z position of the thumb tip.

Fig. 6. Left: Experiment setup, one camera is mounted on the top shaft;
second camera is located at the side. Middle: ThuMouse Gesture, the thumb
rubs on the planar surface of the index finger

At the same time, to evaluate the system’s performance in
matrix units, all trials are carried out with the hand at the
same relative position to the top camera. Doing so ensures the
displacement per pixel is consistent across sessions. The values
include the distance from above camera and hand, resolution
of the cam1 and cam2, and the angle of views.

Rescam1Y = 400pixels Rescam1X = 600pixels

Dcam1 = 10cm AoV = 78◦

Using these values, we get:

PresX =
2×Dcam1 × cos(AoV/2)

Rescam1X
= 2.70mm/pixel

PresY =
2×Dcam1 × cos(AoV/2)

Rescam1Y
= 4.05mm/pixel

(13)

B. Quantitative Results

Here we present the validation result to show the tracking
capability of the proposed system. As of the time of this work,
we are not aware of any previous work on tracking the position
of finger through mmWave sensors. Thus there is no sound
base for comparison.

TABLE I
SYSTEM PERFORMANCE ALONG EACH AXIS. THE SECOND LAST ROW

SHOWS THE STATISTICS FOR X AND Y AXIS COMBINED AS A PLANE, AND
THE ROW HEADED ’XYZ’ IS FOR THE OVERALL PERFORMANCE.

Mean Squared Error Standard Deviation
X 9.23 px2(1.27mm2) 3.03 px2(1.12mm2)
Y 23.6 px2(1.44mm2) 4.86 px2(1.20mm2)
Z 64.4 px2 8.02 px2

XY 16.4 px2(1.35mm2) 4.05 px2(1.16mm2)
XYZ 32.4 px2 5.69 px2



Fig. 7. Left:X-Y Contour Color Map;Middle:X-Z Contour Color Map;
Right:Y-Z Contour Map. From the figure, the XY contour map is most stable
and gather almost in one area

Fig. 8. Radar tracking vs. CV tracking : the chart shows 10 consecutive
tracking result on the x-y plane. The number in the graph are the index in
time.

Overall, ThuMouse performs well in resolving movement
of the thumb-tip on the rubbing on the surface of the index
finger. For above statistics and Figure 5-7, it is evident that the
general trend of radar tracking predictions correspond to that
of the cameras. In terms of resolving the XYZ displacement
of the thumb-tip, the system displays reasonably good efficacy
for the x-y plane (Mean Squared Error (MSE)xy=16.4 px=1.35
milimeter). The competence along the z-axis, however, is
wanting, which can be made a subject for future study to
address. At present, we may conjecture that the lack of
discriminating power for z is due to the fact that the signal
strength drops more sharply along the inclination than it does
along the azimuth, resulting in a smaller inclination FoV.

V. DISCUSSION AND FUTURE WORK

We introduced ThuMouse, a novel micro-gesture that tracks
the position of a finger to realize intuitive cursor-like input

Fig. 9. Radar tracking (Orange Line) vs. CV tracking (Blue Line): the charts
shows 120 consecutive tracking along x, y and z axis.

based on the mmWave technology. By using the end-to-end
training model composed by Convolutional Neural Network
and Recurrent Neural Network, we can achieve high accuracy,
real time tracking and realize the gesture control. On the other
hand, we acknowledge the following limitation of the system:
the tracking performance along the y and z axis is not as
desirable comparing to that along the x-axis. The relatively
narrower inclination FoV may contribute to the poor sensitivity
in resolving vertical movement. Besides, the location of the
hand affects the distribution of points (features).

As for future work, we wish to highlight four potential
aspects. (1) The YOLO object detection can be used as
ground-truth in application-specific scenarios as we did. More
generalized gesture product such as LeapMotion may be able
to to further facilitate the training of radar gesture models.
(2) mmWave sensors have the ability to penetrate certain
materials, so it is can be possible to track the finger movement
in non-line-of-sight (NLOS) settings where gesture performing
area is obstructed, such as writing with the index finger in
the center of the palm. (3) Another interesting point is that
the radar can detect objects with the same range but different
velocity, which entails that it has the potential to track multiple
movements at the same time. Thus, in the future we could
track more fingers or more fine-grained movements. (4) The
software pipeline presented in this work runs on a system with
Intel i9-8950HK and GTX1080 graphics card and achieved a
relatively smooth interaction. The real-life deployment of such
system would involve further study on optimizing the model
to give higher frame rate on low-end systems.

CONCLUSION

In this paper, we propose the ThuMouse for real-time track-
ing, based on mmWave technology. Our technique depends on
the end-to-end trained, which combined the YOLO, Convo-
lutional Neural Network and Recurrent Neural Network. By
using these methods, we can realize that the real time tracking
of the fine grained gesture. Future work could decrease the



latency of the ThuMouse and explore more gesture tracking
potential of the mmWave technology.

ACKNOWLEDGMENT

We would like to express our gratitude to Meijie Wang,
colleague from the CS department, who lead her expertise with
constructing our experiment environment. Thanks to Hanfei
Sun with his contribute to the data augmentation algorithm.
We would also like to extend our thanks to Alex Galvan, and
our coworkers at the lab who participated in our experiments,
allowing us to collect valuable data within time constraint.
Lastly, we are grateful to Aung Khant Min and Daliang Shi
for their editorial effort on our paper.

REFERENCES

[1] Arbabian, A., Callender, S., Kang, S., Rangwala, M., and Niknejad,A.M.
”A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with appli-
cations in imaging and gesture recognition.” IEEE Journal of Solid-State
Circuits 48.4 (2013): 1055-1071.

[2] Wang, S., Song, J., Lien, J., Poupyrev, I., Hilliges, O. ”Interacting with
soli: Exploring fine-grained dynamic gesture recognition in the radio-
frequency spectrum.” Proceedings of the 29th Annual Symposium on
User Interface Software and Technology. ACM, 2016.

[3] Huang, D., Zhang, X., Saponas, T. S., Fogarty, J., and Gollakota, S.
”Leveraging dual-observable input for fine-grained thumb interaction
using forearm EMG.” Proceedings of the 28th Annual ACM Symposium
on User Interface Software Technology. ACM, 2015.

[4] Pu, Q., Gupta, S., Gollakota, S., and Patel, S. ”Gesture recognition using
wireless signals.” GetMobile: Mobile Computing and Communications
18.4 (2015): 15-18.

[5] Poupyrev, Ivan. ”Radar-based gesture sensing and data transmission.”
U.S. Patent No. 9,811,164. 7 Nov. 2017.

[6] Saboo, Krishnakant Vijay, and Sandeep Rao. ”Gesture recognition using
frequency modulated continuous wave (FMCW) radar with low angle
resolution.” U.S. Patent No. 9,817,109. 14 Nov. 2017.

[7] Zou, Yongpan, et al. ”Grfid: A device-free rfid-based gesture recognition
system.” IEEE Transactions on Mobile Computing 16.2 (2016): 381-393.

[8] Lien, Jaime, et al. ”Soli: Ubiquitous gesture sensing with millimeter
wave radar.” ACM Transactions on Graphics (TOG) 35.4 (2016): 142.

[9] Papon, J., Abramov, A., Schoeler, M., and Worgotter, F. ”Voxel cloud
connectivity segmentation-supervoxels for point clouds.” Proceedings of
the IEEE conference on computer vision and pattern recognition. 2013.

[10] Qi, Charles R., et al. ”Pointnet: Deep learning on point sets for 3d
classification and segmentation.” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017.

[11] Smith, K. A., Csech, C., Murdoch, D., and Shaker, G. ”Gesture recog-
nition using mm-wave sensor for human-car interface.” IEEE Sensors
Letters 2.2 (2018): 1-4.

[12] Zeng, Y., Pathak, P. H., Yang, Z., and Mohapatra, P. ”Human tracking
and activity monitoring using 60 GHz mmWave.” 2016 15th ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN). IEEE, 2016.

[13] Iovescu, Cesar, and Sandeep Rao. ”The fundamentals of millimeter wave
sensors.” Texas Instruments, SPYY005 (2017).

[14] Redmon, Joseph, and Ali Farhadi. ”YOLO9000: better, faster, stronger.”
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017.

[15] Sander, J., Ester, M., Kriegel, H. P., and Xu, X. ”Density-based clustering
in spatial databases: The algorithm gdbscan and its applications.” Data
mining and knowledge discovery 2.2 (1998): 169-194.

[16] Maturana, Daniel, and Sebastian Scherer. ”Voxnet: A 3d convolutional
neural network for real-time object recognition.” 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE,
2015.

[17] Dardas, Nasser H., and Nicolas D. Georganas. ”Real-time hand gesture
detection and recognition using bag-of-features and support vector
machine techniques.” IEEE Transactions on Instrumentation and mea-
surement 60.11 (2011): 3592-3607.


