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ABSTRACT
Many intelligent systems can be personalised by end-users
to suit their specific needs. However, the interface for per-
sonalisation often trades off the degree of personalisation
achievable with time, effort, and level of expertise required
by the user. We explore two approaches to end-user person-
alisation: one asks the user to manually specify the system’s
desired behaviour using an end-user programming language,
while the other only asks the user to provide feedback on the
system’s behaviour to train the system using reinforcement
learning. To understand the advantages and disadvantages
of each approach, we conducted a comparative user study.
We report participant attitudes towards each and discuss the
implications of choosing one over the other.

CCS CONCEPTS
• Human-centered computing → User interface pro-
gramming.
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1 INTRODUCTION
Motivation: Eyes-free Participation in Meetings
Entering a meeting room, attendees immediately gain con-
textual information about the meeting, including who is
already in the room and what they are doing. It has been
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shown that this information is crucial to meeting participa-
tion [5, 8, 13, 16], and that without it, a meeting attendee can
be more inhibited, and less able to contribute to the meeting.
For a number of reasons, participants of modern meetings
may not have access to this information. For instance, blind
and low vision individuals have described this information
asymmetry as a major hurdle in meetings [13, 22]. Partici-
pants often join meetings remotely without access to video,
due to bandwidth limitations, or due to a parallel eyes-busy
task such as driving or cooking [13, 14, 16].
To facilitate eyes-free participation in a meeting, we are

studying the use of a computer vision system to extract the
visual information that is important for equitable meeting
participation. Information that may be extracted include at-
tendee identity [21], pose [23], location, focus of attention
[17], and other visual features such as clothing [9]. Computer
vision systems might even be able to infer estimated age and
gender [17, 19]. Any information thus inferred could be re-
layed to the user via eyes-free methods such as sonifications,
text-to-speech, or tactile output. Given that a new entrant
to a meeting only has a small amount of time available to
gain context, it is important that the most useful subset of
available information is presented to the user.
The ‘most useful subset’ varies not only from context to

context, but also from user to user. A goal of an intelligent
system is to automatically adapt to the context or to users’
preferences to achieve a personalised experience and im-
prove performance. It is not possible for system designers to
correctly anticipate user preferences in many contexts, so a
naïve heuristic-based solution to the subset selection prob-
lem would not be satisfactory. Thus, it is important to have
a personalization interface. However, it is challenging to en-
able users to specify preferences for automated adaptation
without requiring excessive time and effort.

Personalisation Approaches
This paper explores two alternatives for end-user person-
alisation of such a system. One approach is to learn auto-
matically from how the user interacts with the system and
from user feedback, which is well suited to reinforcement
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learning models. Reinforcement learning typically requires
a large number of feedback instances from the user to reach
the desired level of personalisation. The reward signal for re-
inforcement can be given explicitly (e.g., by the user marking
whether behaviour was appreciated or not) or implicitly (e.g.,
if the user turns the volume down for some notifications, or
actively queries the system for information). End-users may
not be able to give a fully-informed response because they
cannot visually perceive all information in the environment,
and may not realise when insufficient or incorrect informa-
tion has been given. This further leads to users having less
control and therefore less ownership and trust of the system.
An alternative approach is to enable the user to directly

specify their preferences, using a simple end-user program-
ming paradigm to define the system’s behaviour, such as
rule-based programming (e.g., if this, then that). Explicit
rule-based programming has the potential for avoiding user
frustration and increasing ownership of the system. How-
ever, users might struggle to specify their needs in suchways;
or to anticipate what information they may want in differ-
ent situations. To design such systems effectively, we were
motivated to understand strengths and weaknesses of each
approach. Background work in this area is in Appendix B.

2 MEETING SIMULATOR IMPLEMENTATION
To explore personalisation for an eyes-free meeting, we cre-
ated a meeting simulator. It creates a readily-available source
of well-controlled meeting scenarios. Each generated meet-
ing contains a variable number of attendees. For each at-
tendee, the following 8 attributes are generated: relation,
name, pose, activity, eye gaze mode, location, clothing and gen-
der. These are further elaborated in Table 1 in Appendix A.
These were chosen based on current inference capabilities of
computer vision systems, as well to provide enough diversity
for interesting personalisation opportunities.
Each simulated meeting contained 3–8 attendees. Partic-

ipants provided names of colleagues prior to the study, al-
lowing us to constrain each simulated meeting to contain
1–3 attendees known to the participant. The value for each
attribute was randomly chosen, with constraints. For exam-
ple, if an attendees’ activity is typing, then the eye gaze mode
will be looking at the phone or laptop.

Two interfaceswere built to personalisemeeting overviews,
corresponding to rule-based programming and reinforce-
ment learning. Both used the same meeting attributes as the
basis for personalised notifications.

Interface 1: Rule-based programming
This interface supports the manual creation of different sets
of rules for different global contexts (e.g. different meeting
sizes). The user would define the global context first (e.g.
total number of attendees > 5). Then they would define the

associated notifications (e.g. provide the name for all atten-
dees). They could have a different set of rules for a different
context (e.g. if the total number of attendees less than or
equal to five, provide the name and location for all attendees).
Alternately, a user may want different notifications based
who is speaking. Then one possible set of rules could be:
when there is an attendees whose relation is known and ac-
tivity is speaking, tell me the eye gaze mode for all attendees;
when there is an attendee whose relation is unknown and
activity is speaking, tell me the pose for all attendees. The
second consideration is to set notifications for specific atten-
dees. For example, the user might want to know different
information for attendees based on their relation. Possible
rules could be: tell me the name and activity for attendees
whose relation is known, tell me the location and pose for
attendees whose relation is unknown.

Based on this, we divide our rule-based programming in-
terface into two parts to support two level nesting if-clauses:
the if-clause to set the ‘global context’ condition, and the
if-clause to set notifications for specific attendees when the
first-cause is satisfied (Figure 1). The first part enables users
to set the ‘global context’ condition for the whole meet-
ing, which could be: when the total number of all attendees
{=, <, > x}, x is a number between 0 and 8; when the total
number of attendees whose one attribute is or is not one cer-
tain value {=, <, > x}; when there is an attendee whose one
attribute is or is not one certain value and another attribute is
or is not one certain value. The second part is setting notifica-
tions for specific attendees when the meeting satisfies the
‘context’ condition, which could be: if attendees’ one attribute
is or is not one certain value, then tell me these attributes.

Users can enter an arbitrary number of rules, and an arbi-
trary number of if-clauses and notifications per rule. Users
can also review, edit and delete existing rules (Figure 1).

Interface 2: Reinforcement learning
In reinforcement learning [20] an agent interacts with an
environment by taking actions with the goal of accumulating
reward. The interaction is in discrete steps: in step t , the en-
vironment is in state st and the agent takes action at ; it then
receives information about the next state st+1 of the environ-
ment and the obtained reward rt which typically depends on
both st and at . Initially, the agent does not know the environ-
ment’s dynamics (state transitions and reward) but can learn
about these from interactions with the environment. It can
then adapt its behaviour to maximize cumulative reward.
Reinforcement learning problems can be solved using Q-

learning and an ϵ-greedy policy [20]. We implemented the
deep learning approach from [15] for Q-learning. This ap-
proach uses a neural network (Q-network) that takes a fea-
turised state representation as input and maps it to the cor-
responding Q-values—from those we can identify the best



Evaluating Rule-based Programming and Reinforcement Learning IUI Workshops’19, March 20, 2019, Los Angeles, USA

ON

Training

Existing rules

Rule 1

Rule 2

Enter Rules

Next Meeting

Eye Gaze Mode
Activity
Pose
Relation
Name
Any Attendees

Unknown
Known

Relation is Known

Eye Gaze Mode
Activity
Pose
Relation
Name
Number

=
<
> 0

1
2
3
4
5
6
7
8

Number > 2

Select this condition

Selected conditions:

When the total number of attendees > 2 for  
attendees whose relation is known X

Selected notifications:

Notify me the name for attendees  
whose pose is sitting X

Eye Gaze Mode
Activity
Pose
Relation
Name
All Attendees

Other
Standing
Sitting

Pose is Sitting

Gender
Clothing

Eye Gaze Mode
Activity

Pose
Location
Relation
Name

Number

Name

Select these notifications

Submit

Delete

Edit Rule

Enter Rule

Part 1: Set the "global context" 
condition for the whole meeting

Part 2: Set notification for specific  
attendees

Figure 1: Interface for rule-based programming. Users can create different meeting contexts (Part 1). For each context, a set of
notification rules can be defined (Part 2). For example, theremay be different notification rules based onmeeting size (context).
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Figure 2: Participants used this interface to provide feedback
for reinforcement learning after each notification.

action to take.Typically, training such models requires huge
amounts of feedback. With the goal of being parsimonious in
terms of required feedback, we designed the reinforcement
learning model to select notifications for each attendee indi-
vidually. We only allowed users to give binary feedback (a
reward of ±1) corresponding to whether a user was satisfied
with the notifications about each attendee (Figure 2).

In the context of our meeting simulator, the input to the
Q-network includes the features of each attendee, which are
the values of each attribute. Each instance of the attendee’s
attributes used in the rule-based programming interface is a
feature for the reinforcement learning model. There are 17
features in total, which includes 4 features for name (known
A, known B, known C, other), 2 features for relation (known,

unknown), 3 features for pose (sitting, standing, other), 5
features for activity (reading, typing, speaking, listening,
other), and 3 features for eye gaze mode (screen projector,
other member in meeting, other). The Q-network consists
of three fully connected (FC) layers with rectified linear
unit (ReLu) activation functions [6] and 200 neurons each.
We used an ϵ-greedy policy of ϵ=0.2, and we implemented
an optimizer using RMSprop with a learning rate of 0.001.
The possible actions correspond to which attributes of the
meeting attendee the user should be notified about. The 8
attributes result in 256 possible actions (28=256).

3 USER STUDY
We focus here specifically on the moments at the very be-
ginning of a meeting, which we call the meeting overview,
rather than an ongoing assistive experience throughout the
meeting. While we recognise the importance of ongoing
assistance, we have chosen to focus only on the meeting
overview to make the scope of our study tractable.

Participants
Fifteen participants were recruited using convenience sam-
pling, 8 female and 7 male. Participants spanned four orga-
nizations and worked in a range of professions including
real estate planning and surveying, business operations, in-
teraction design research, machine learning research, and
biomedical research. Six participants self defined as program-
mers, and among them, five participants had experience in
machine learning from taking courses or research experience.
We will refer to our participants as P1, P2, ..., P15.
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Figure 3: Experimental procedure

Scenario and task
In this experiment, we considered a scenario where partic-
ipants need to join a meeting with a few colleagues that
they know and some people that they do not know. We told
the participants that they had dialed into the meeting late
without any video, but that the system could give them an
overview of what was happening when they entered the
meeting. They were then given a detailed explanation of the
various attributes. The task was to train the system to only
deliver information of interest to the participant.

Procedure
The experiment used a within-subject design. Our two condi-
tions were rule-based programming and reinforcement learn-
ing. All participants performed the task twice, once in each
condition, in counterbalanced order.

Participants were first introduced to themeeting simulator.
Then there were two sessions. In each session, participants
used a different adaption technique. There were 3 sections
in one session: default setting, training, and testing. Figure 3
describes this procedure and timeline. In the ‘default setting’
section, participants entered a simulated meeting, where
they were notified about all information about all attendees.
In each ‘training’ section, participants were asked to use

the two strategies we provide to personalise the notifica-
tion system for 20 minutes to train the system to only give
them the information they want to know to understand the
situation. The participants’ cognitive load for this training
process was measured using the standardised NASA Task
Load Index questionnaire ([7]). Then, in the ‘testing’ section,
participants entered another two simulated meetings, where
their own personalised notification system was used.

Participants also filled out a questionnaire about their sat-
isfaction level with using this approach. This questionnaire
consists of four questions on a 7-point scale. Q1: after test
meeting 1, how relevant was the notification to your interest?
Q2: after test meeting 2, how relevant was the notification
to your interest? Q3: How successful were you at creating

the rules/how successful do you think the system was at
learning your preferences? Q4: In general, how satisfied are
you with the notifications after training the system?

At the end of the experiment, we conducted a short semi-
structured interview to ask about participants’ experiences
and opinions. We asked what participants struggled with
when using the two techniques, their opinions about the
advantages and disadvantages of the two techniques they
experienced, as well as what would be the ideal approach
for them to personalise such a system. Participants were
encouraged to think-aloud throughout the experiment. The
entire study was audio recorded and transcribed.

For the rule-based programming approach, the researcher
also helped participants navigate the interface. The researcher
did not help participants with developing rules or formulat-
ing rules. Considering the time constraint of the experiment,
this enabled participants to focus on the rule-based approach
in comparison with the reinforcement learning approach,
rather than the specific interface that may require training
to fully understand. The experiment took about 60 minutes
and participants were compensated £20 for their time.

4 RESULTS
Our quantitative comparisons showed that participants re-
ported a significantly lower cognitive load, and significantly
higher satisfaction scores, when using rule-based program-
ming rather than reinforcement learning. Our complete sta-
tistical analysis is presented in Appendix C.
The rest of this section presents our qualitative analysis

of participants’ experience during and after the experiment.

Rule-based programming
Even though all participants were able to personalise the sys-
tem by using rule-based programming, they also asked ques-
tions or requested help from the researcher. The following
sections present common issues participants experienced.

Difficulty understanding the filtered information. Some par-
ticipants had difficulty understanding the meetings with the
notifications constrained by their rules. This means that par-
ticipants had false expectations about the notifications they
would receive based on their rules, and therefore had difficul-
ties uncovering what was happening in the meeting based
on the filtered information. This issue always happened at
the beginning of the training, and was always resolved with
the help of the researcher. For example, P5 described her frus-
trations:“I want to know when people are speaking, whether
people are listening and what they are doing now, this includes
much more information. For example, when I imagine this, I
thought I would know the people who are speaking and who
are listening, and what exactly they are doing. When I told you
to use the rules, it lost too much information.”
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In this case, P5 entered rules to set the notifications to tell
her who is speaking and who is listening, but since there
was no one speaking or listening in the meeting overview
(the beginning of the meeting), there was no notification.
However, P5 had difficulty understanding this logic.

Difficulty maintaining multiple rules. While the system sup-
ports participants in creating multiple rules, it is also more
difficult to keep track of multiple rules and understand how
they work together. For example, P2 asked the researcher
when creating multiple rules: “So all of these rules are stacking
up?” P4 questioned how multiple rules work together after
trying multiple rules in one meeting: “Okay, the last one was
very short, did some of these [rules] override each other?”

Participants also became confused with notifications when
dealing with multiple rules, even when knowing how they
work together. For example, P6 created different rules for
meetings with different sizes. After one meeting, P6 men-
tioned he was not satisfied with the information. The re-
searcher inquired further, and mentioned that the meeting
is a small size and the notifications were given based on his
rules for small meetings. Then, P6 said: “This is a small meet-
ing? Oh, then yes, I am satisfied. Sometimes I get confused.”

Confusion about what the interface supports. Some partici-
pants expressed confusion about the capability of the inter-
face. For example, P2 said, “I don’t know [if] what I need, or
what I am asking for, is more granularity in control or things
which can’t be given.” Some participants wanted functionality
the interface did not provide. For example, P3 commented,
“The way I was hoping is to be able to train the system to take
out the stuff I don’t like to hear about, like I don’t want to
know the clothing for everyone.” However, the interface only
supports users to specify attributes they want to hear. Some
participants were unaware of functions the interface sup-
ported. P11 commented, “Still there some things, instances or
features, like other activities, are not that informative, but I
guess it is the best we can do, I can not just grows out the other
activity.” Although, in fact, the interface can support users
to specify if the activity is other, then...

Reinforcement learning
Difficulty giving binary feedback. Arriving at a binary judg-
ment about each notification was described as difficult by
many participants. Frequently, they expressed a desire to be
able to give richer feedback. In keeping with best practice
for fast convergence of reinforcement learning, participants
were instructed to only give positive feedback to the system
when they were completely satisfied with the notification,
i.e., when there is neither any unnecessary nor missing in-
formation. However, participants struggled to understand
this concept and usually needed further explanation. For
example, P10 asked: “Should I say ‘yes’ if I am fully satisfied

with it?” P13 asked: “ If I am okay with that, but if I need some
new information, should I press yes or no?” Some participants
also developed their own heuristics for giving feedback, even
after the researcher’s explanation. P8 described her strategy:
“One part is ‘yes,’ another part is ‘no,’ so I can say ‘yes.”’

Moreover, many participants wanted to give richer expla-
nations to the system about why they gave specific feedback
and what they want. For example, P5 gave this explanation:
“If someone is sitting and silent, maybe I want to know that
he is sitting, but if someone is speaking, I don’t want to know
whether he is sitting or standing.”

Concerns about inconsistent feedback. Participants were con-
cerned about providing inconsistent feedback, and took re-
sponsibility for an unsatisfactory outcome if they had given
inconsistent feedback. As the training continued, partici-
pants gradually learned more about their own preferences
and changed their mind about what they wanted, a form of
concept evolution [12]. Thus, participants could have differ-
ent responses for the same notifications in different stages
of the training. Theoretically, this is not an issue for the re-
inforcement learning model as it will learn to adapt to users’
preferences over time. However, some participants felt a
need to give consistent feedback to the system. P5 expressed
her own discomfort about giving inconsistent feedback: “It
is hard for me to give the feedback. At the beginning, I thought
this information is good to understand this meeting. but then
after training for a while, I begin to notice that some informa-
tion is too much for me, I don’t need to know the information.
But I also thought ‘oh I chose different answers before.” P12 ex-
pressed her worry that inconsistent feedback would confuse
the system: “I just made the mistake to train it to think I am
happy with ‘known’ as knowing who that person actually is.
But now if I change that, I am just gonna confuse it, it’s gonna
be like ‘what, I thought you are happy with that?”’
Moreover, some participants thought it was their fault

if they gave inconsistent feedback. For example, P10 com-
mented: “I feel like I misled the system a little bit while I was
still trying to figure out, during the training, what stuff I want.”

Uncertainty about the personalisation ability of the system.
Participants were unsure about the capability of the rein-
forcement learning model, and concerned about its outcome.
The capability of the reinforcement learning model refers to
what preferences the system is able to learn. Even though
participants were only asked to give feedback to the sys-
tem and did not need to worry about the underlying model,
their understating of what the system is capable of can also
affect how they give feedback. For example, P6 asked the
researcher: “Maybe the second sentence came out, I will say
‘yes,’ but similar sentence came out at the fifth, I will just say
‘no,’ because at first I did not get too much information, but
then I got more information, should I say ‘no’?” In this case,
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P6 was satisfied with more information about the first few
attendees during the overview, but wanted less information
when the system moved to the following attendees because
the information started to be overwhelming. However, the
order of the notifications was not implemented as a feature of
the reinforcement learning model, and therefore the system
is not able to learn this particular preference.
Moreover, during the training, some participants won-

dered about how the reinforcement learning model works
and the outcome of the training. For example, P2 commented
that she was focused on reasoning about how the system
worked rather than the notifications themselves: “Maybe I
think too much about - maybe trying to reason about what it
is doing, rather focusing on the notifications themselves, and
I found that distracting a little bit.” P9 asked the researcher
about what will happen during the training: “Does the train-
ing, for the whole training period, give me all the options?” Par-
ticipants were also curious about the outcome of the model.
P10 asked, “Is my score gonna converge to a certain value?”
P6 also asked the researcher: “So what is its conclusion?”

Post-experiment interview
Advantages and disadvantages of the two approaches. Partici-
pants identified rule-based programming as fast and straight-
forward, and expressed feeling more in control of the system
by entering the rules themselves. Six participants in par-
ticular described liking the functionality to be able to add,
edit and delete the rules. However, two participants men-
tioned that it is difficult to come up with the rules from
scratch, while other participants had clear rules in their head
in the beginning. Three participants (all non-programmers)
expressed concern if they had to use the rule interface them-
selves without the help of the researcher. For example, P3
said: “I would fail at the logic if I have to do that”. However,
the majority of participants believed they could learn to use
the interface easily if given a tutorial or by trial and error.

With reinforcement learning, participants thought it was
easy to just give simple feedback to the system, and the
variance of the outputs helped them figure out what they
wanted. The disadvantage was that the training process was
repetitive and took a considerable amount of time.

Preference between approaches. The majority of the partici-
pants expressed preference for the rule-based programming
approach over the reinforcement learning approach, due to
the advantages described above. However, three participants
(two of whom self-defined as non-programmers) said that
they preferred the reinforcement learning approach because
it learned their preferences and it was satisfying to automat-
ically receive personalised notifications.
For this specific system and scenario, most participants

thought the ideal approach would be a combination of the

two approaches, while three participants (two of whom self-
defined as programmers) thought they would only need rule-
based programming as it was an effective way to achieve
well-defined preferences, but they could see the advantages
of reinforcement learning for others. For people who wanted
a combination of the two approaches, all of them expressed
a similar idea of being able to control the system’s behaviour
by entering or editing rules, while also using a pre-training
phase with the reinforcement learning model to help them
figure out what they want or to suggest rules. Then, the
reinforcement learning model could also learn from how
they use the system and suggest rules. For example, P13
mentioned that it would be helpful to detect what is a big
versus a small meeting for him.

5 IMPLICATIONS FOR DESIGN
System adaptation capability & users’ preferences
We found that participants were unsure about the system’s
adaptation capability when using both techniques. With the
rule based programming, they were unsure about what the
rule grammar could express. For example, do users have to
define only what they want or can they specify what they do
not want? For the reinforcement learning model, they were
unsure about what the system could learn. For example, can
the system learn that the user wants to know the pose, or
that the user only wants to know when the pose is standing?

We think issue is important because the first step towards
personalisation is to form preferences. In some cases, the
preferences are easy to form, but there are also cases where
it is difficult for users to figure out what they really want. A
clear understanding of the system’s personalisation capabil-
ity can help them develop reasonable preferences. Rule-based
programming was easy when users were sure about what
they wanted and the interface supported them to achieve
that. However, even when users were satisfied with the rules
they created, there might not realise the system was more ca-
pable. For example, users could be satisfied with one rule for
all meetings, but unaware that they could have set different
rules for meetings with different sizes. The reinforcement
learning approach has the advantage of exposing users to
different actions that the system can take, therefore helping
users figure out what they want. Then, a clear understanding
of what the system is capable of learning can guide users
to give feedback. A possible solution for this is to provide
examples and explanations to users in the beginning.

Interface to help users express their preference
Based on the results of our study, some participants strug-
gled to express their preferences using the rule-based pro-
gramming interface, and most struggled about how to give
feedback to the system when using reinforcement learning.
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Rule-based programming can support users to edit/add/delete
rules anytime, and therefore, the main issue for this tech-
nique centers on how to enter rules they have in mind, espe-
cially for users with little programming experience.
For the reinforcement learning model, the continuous

training phase and binary feedback make it difficult for users
to gradually develop their preferences and express them. For
example, users cannot answer ‘yes’ or ‘no’ questions when
they are not even sure what they want. Also, when partici-
pants did identify what information they wanted, there was
no way for them to express their preference to avoid the
lengthy process of reinforcement learning.
This suggests that systems should make clear to users

what actions are needed achieve certain preferences. Possi-
ble solutions are developing interfaces to support users to
give more rich feedback, for example, the feedback in the
reinforcement learning scenario could be a scaled satisfac-
tion score from 1 to 7. Or a hybrid interface could combine
rule-based programming and reinforcement learning: users
identify their preference through iterative feedback, but can
later specify precise preferences through rules.

Help users develop cognitive model of the system
We also found out it was difficult for participants to develop a
cognitive model of the personalised system.When using rule-
based programming, participants became confused when
dealing with multiple rules. For example, it was difficult for
them to know which rules were in use in different scenar-
ios. When using reinforcement learning, participants were
concerned about the outcome of the personalised system.
They did not know what the system learned, and thus the
outcome of the system was unpredictable.

To help users develop their cognitive model, it is necessary
to provide context. For example, if there are different rules
for big and small meetings, users should be informed of the
meeting size and hence which rule is in effect.

6 CONCLUSION
In this work, we studied a pure rule-based programming
interface as well as a pure machine learning interface, in an
identical setting, going beyond previous studies that have
not compared the two alternatives in precisely the same
end-user programming task. We found that for this specific
system and task, the rule-based programming approach was
perceived as more straightforward and easier to use than the
reinforcement learning approach.
Our results suggest that an effective personalisation ap-

proach for this scenario and task would be a combination of
both approaches. Reinforcement learning could help gener-
ate candidate rules, help users form preferences when they
are unsure of thier preferences, detect contexts that are hard
to express otherwise. Rule-based programming could help

define context, explain behaviour learned by amachine learn-
ing model, and provide an interface for editing or specifying
behaviour not captured by the model.
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A ATTRIBUTES
The attributes of meeting attendees used in personalised
meeting overview are described in Table 1.

B BACKGROUND AND RELATEDWORK
End-user personalisation
Previous work has found rule-based programming to be a
viable approach for intelligent systems, but with limitations
including difficulty of learning syntax and low motivation
for end-users. Machine learning approaches, such as rein-
forcement learning, can alleviate issues, but only for part
of the personalisation problem (such as for specifying the
context).
Barkhuus and Dey [1] identify three levels of interactiv-

ity for context-aware systems. Their classification makes
an explicit distinction between personalisation – the user
specifies the desired behaviour in each situation, passive
context awareness – the system detects a change in con-
text but leaves it to the suer to take any necessary actions,
and active context awareness - the system detects changes
in context and acts automatically. In a case study of vari-
ous context-aware applications for a mobile device (such
as changing of ringing profiles, location and activity-based
alerts) the authors found that participants preferred active

context awareness to personalisation, despite a perceived
lack of control.
The distinction between personalisation and active con-

text awareness as defined by this study is essentially that in
both cases, the system detects changes in contexts and acts
automatically. However, in the personalisation scenario, the
behaviour has been defined buy the user, whereas in the ac-
tive context awareness scenario, the behaviour is defined by
the system designers. When the system designers correctly
anticipate behaviour that end-users prefer, this works well.
However, this is not an assumption we could make for the
meeting scenario.
It remains an open question as to how best to combine

rule-based end-user programming with machine learning
and automatic inference. Many systems, such as CASAS [18]
exclusively use one over the other (in this case, use machine
learning over end-user programming). Moreover, context-
aware computing does not have a sophisticated treatment of
end-user programming. These are discussed below.

Rule-based programming in intelligent systems
Several studies have looked at rule-based programming for
personalizing intelligent systems. This approach has also
been referred to as trigger-action [24] and conditional logic
[10]. Ur et al. [24] found that trigger-action rules can ex-
press most desired behaviours submitted by participants in
an online study on smart homes. In a subsequent usability
study, they found that inexperienced users can quickly learn
to create programs containing multiple triggers or actions.
Holloway and Julien [10] also found in an online survey that
the rule-based programming paradigm (what the authors
refer to as ‘conditional logic’) was a common method for
describing desired smart home behaviours. The majority of
respondents (73%) used some form of conditional logic (if,
then, else, while, when) to describe the scenarios. This was
the case both for programmers and non-programmers. They
reported wide variation in user preferences regarding de-
sired behaviours, as well as wide variation of approaches
to achieving similar actions, demonstrating the need for a
personalisable system.

Some challenges have also been identified with rule-based
personalisation. Brush et al. [2] found that poor interfaces
for rule-based automation led to rules that were unreliable
and hard to debug. Moreover, the complexity of user desires
were often a poor fit for limited rule grammars, with one
participant remarking that “you can’t really create hard rules
to describe every single situation that you might want to
automate.” Ur et al. also identified a class of triggers with
the term ‘fuzzy triggers’, which are ambiguous or person-
dependent (e.g., “the water is too hot”), which the authors
suggest to be an opportunity to integrate machine learning.
The authors further suggest that machine learning could be

https://doi.org/10.1145/3173574.3173777
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Table 1: Attributes of meeting attendees used in personalised meeting overview. The meeting simulator generated multiple
meeting instances with different combinations of attendees for the user study.

Attribute Possible Values Description

Relation Known, Unknown Relation to the attendee
Name <Individual’s name>, Person 1, Person 2,

etc.
Names of known attendees. For unknown
attendees, their name will be Person 1, Per-
son 2 ,etc.

Pose Sitting, Standing, Other Pose Other pose means any other pose except
sitting and standing

Activity Reading, Typing, Speaking, Listening,
Other Activity

What the attendee is doing

Eye Gaze Mode Other Attendee, Projector Screen, Personal
Phone / Laptop, Other Object

Who or what the attendee is looking at

Location 1 to 12 o’clock Attendee’s location. We assume there is a
projector screen in the meeting room. The
location is clock-wise in reference to the
screen at 12 o’clock

Clothing Shirt, T-shirt, Dress What the attendee is wearing
Gender Male, Female We assume users know the gender for

known attendees. Therefore, gender is only
provided for unknown attendees

used to resolve ‘conflicts,’ i.e., where different users create
different rules, or where the same user creates different rules
over time.

Machine learning
Machine learning from user annotated examples has been
found to be effective for specifying contexts. The a CAP-
pella system [4] asks users to annotate captured sensor data
post-hoc as being part of a certain ‘situation’ (e.g., a meet-
ing), as well as pruning data from sensors deemed irrelevant.
Machine learning models can then be trained to predict the
context from the sensor data. This simplifies the end-user
specification of a particular context by asking the user only
to identify the context rather than define it.

The idea that context should be inferred from sensor data
appears to be a central assumption of context-aware com-
puting research. A survey by Hong et al. [11] characterises
the process as follows: “First, algorithm is utilized to infer
high-level context of user. According to levels of abstraction,
context is divided into low-level context and high-level con-
text. Low-level context is raw data collected directly from
physical sensors, while high-level context is inferred from
low-level context. This part involves the algorithm of con-
text reasoner to extract high-level context and inferring al-
gorithm to extract correct position of user, near object, and
environments.” When users have conflicting preferences,
Hong et al. observe that a number of approaches have been
applied to resolve the conflicts, including information fusion,

time stamps, and fuzzy algorithms, but the problem has not
been solved perfectly.
In this research, we sought to identify design guidelines

for end-user personalisation of intelligent systems. As previ-
ouslymentioned, context-aware programmingmakes limited
reference to the end-user programming challenges of such
systems. However, some previous work has presented de-
sign principles for smart systems, such as Davidoff et al. [3],
whose principles include: “easily construct new behaviours
and modify existing behaviours”, and “account for multiple,
overlapping and occasionally conflicting goals”, which are
broadly applicable.

C QUANTITATIVE RESULTS
All participants successfully completed the task. This section
describes some general observations, and presents the anal-
ysis of cognitive load and satisfaction score questionnaires.

Rule-based programming
All participants were able to personalise the system by cre-
ating rules with the help of the researcher. While the rules
created by the participants share some similarities (e.g., most
participants wanted to know the names of all meeting atten-
dees), participants also showed a diversity of individual pref-
erences (e.g., some participants wanted to know the clothing
information for attendees they did not know, but some partic-
ipants thought the clothing information was too distracting
and not useful). Seven participants defined different sets of
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rules based on the properties of the meeting. For example:
When the total number of attendees > 5, tell me the name,
location for all attendees; When the total number of atten-
dees < 6, tell me the name, location, activity for all attendees;
When there is an attendee whose activity is speaking, tell me
the name, activity for attendees whose activity is speaking.
The other 8 participants defined a single set of rules to apply
to all meetings.

Figure 4 shows the binary feedback given by each partici-
pant and the resulting training loss of the model. A feedback
value of “1” means that the participant responded ‘yes, I am
satisfied with the notification,’ and “-1” means that the partic-
ipant responded ‘no, I am not satisfied with the notification.’
Participants encountered between 45 to 160 notifications dur-
ing their respective sessions. This amount varies due to the
randomized length of notifications generated by the system
and participants’ speed of giving feedback. We did not find
any particular pattern for how participants give feedback.
The training loss was calculated based on the ground truth
(users’ feedback) and the model’s prediction on the training
data. The training loss converged to values close to zero for
most users, indicating that the reinforcement learning model
would likely take actions consistent with the participants’
feedback given during training.

Training Cognitive Load: NASA-TLX
For the training process, participants reported a lower cogni-
tive load when using the rule-based programming approach
than the reinforcement learning approach. Based on the fact
that the researcher helped the participants navigate the in-
terface when using rule-based programming, and that the
participants have to continuously give feedback to the sys-
tem when using the reinforcement learning approach, it is
not surprising that the participants reported a lower cogni-
tive load when using rule-based programming. In particular,
Wilcoxon Signed-rank tests show that there are significant
effects on the temporal demand (the medians were 20 and 35
respectively, the TLX is within a 100-points range; z=-1.999,
p=0.044, r=0.365; physical demand (the medians were 5 and
10 respectively, z=-2.120, p=0.047, r= 0.387); performance
demand (the medians were 20 and 50 respectively, z=-2.684,
p=0.005, r= 0.490); and frustration level (the medians were 10
and 40 respectively, z= -2.316, p=0.018, r=0.423). See Figure 5.
There are no significant differences for the mental demand
and effort.

Reinforcement learning
Satisfaction with personalisation results
Wilcoxon Signed-rank tests show participants reported sig-
nificantly higher satisfaction scores when using the rule-
based programming approach than the reinforcement learn-
ing approach for all four questions: Q1 (the medians were 7
and 4 respectively, the satisfaction score is a 7-point scale;
z=3.330, p<0.005, r=0.607); Q2 (the medians were 7 and 5 re-
spectively, z=3.329, p<0.005, r=0.607); Q3 (the medians were
7 and 4 respectively, z=3.320, p<0.005, r=0.606); Q4 (the medi-
ans were 7 and 4 respectively, z=3.316, p<0.005, r=0.605). See
Figure 6. Again, it is not surprising that participants reported
a high satisfaction score when using rule-based program-
ming. As P10 mentioned when filling out the satisfaction
score for this technique: “Of course I am satisfied, because I
chose the rules myself." This suggests that users feel more in
control when using rule-based programming.
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Figure 4: Reinforcement learning: binary feedback given by participants and resultant training loss
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