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Modeling Teamwork in Supervisory Control of
Multiple Robots
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Abstract—Simultaneously controlling multiple robots requires
multiple operators working together as a team. Determining how to
construct the team to promote performance and reduce workload
are critical questions that must be answered in these settings. To
this end, we investigated the effect of team structure and schedul-
ing notification on operators’ performance, subjective workload,
work processes, and communication using a human-in-the-loop
experiment. In an urban search and rescue setting, we compared
a pooled condition, in which team members shared control of 24
robots, with a sector condition, in which each team member con-
trolled half of all the robots. For scheduling notification, an alert
was given when the operator spent too much time on one robot
and either suggested or forced the operator to change to another
robot. A discrete-event simulation model was constructed to model
the teamwork in supervisory control of multiple robots. The model
was significantly improved by the inclusion of a behavior termed
as “backup.” Backup behavior is a critical coordination mecha-
nism often observed in teams, but rarely explicitly modeled. Pooled
teams showed an advantage when performing backup behaviors in
both the experiment and the model. However, other factors must
be considered when making a decision on what team structure to
use.

Index Terms—Backup behavior, discrete-event simulation
(DES), human supervisory control, robots, teamwork.

I. INTRODUCTION

ADVANCES in technology have enabled increasingly so-
phisticated automated systems to be applied to a num-

ber of fields including manufacturing, aviation, command and
control, search and rescue, air traffic control, and health care.
Unlike autonomous systems designed primarily to take humans
out of the loop, many future systems will support people and
agents working together. Despite the benefits of such automa-
tion technologies, challenges exist for the successful integration
of human operator and automation technologies.

In recent years, there is an increasing interest in enabling one
operator controlling multiple agents with higher levels of auton-
omy. By releasing the operators from manual control, enhanced
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autonomy enables operators to work with multiple agents and
perform a more diverse set of tasks requiring monitoring, coor-
dination, and complex decision-making. However, the required
cognitive load for working with multiple agents could easily
exceed the capacity of a single operator, even with high lev-
els of automation. Teams of humans are increasingly called
upon to perform complex cognitive tasks that are less efficiently
done or impossible to do by an individual. Operators in such
teams typically have to communicate in order to make effec-
tive decisions including the distribution or assignment of tasks,
updating of status, seeking help, maintaining coordination, and
exchanging information. Although teamwork may impose ex-
tra workload related to coordination and communication, teams
have the potential of offering greater adaptability, productivity,
and creativity than any one individual can offer [1].

Backup behavior is a critical coordination mechanism that
teams employ to reduce the risk of errors and maintain perfor-
mance. Backup behavior refers to “the extent to which team
members help each other perform their roles” [2]. Team mem-
bers may provide different forms of back up, such as assisting
the teammate who is behind in his or her work in performing a
task, completing a task for the team member when an overload
is detected, helping a fellow team member correct performance-
related mistakes, and providing resources or supplies [2], [3].

Despite the importance of backup behavior, limited research
has been devoted to quantitatively investigating its impact on
overall team performance. In this study, we used discrete-event
simulation (DES) to model the teamwork of operators during
supervisory control of multiple robots, predict their performance
and explore the role of backup behavior in team coordination.
It is the first quantitative model of backup behavior.

DES has been used to model a single operator’s supervi-
sory control of multiple robots in previous research, where the
robots requesting assistance are thought of as customers waiting
in queues and the operators are thought of as servers [4]–[6].
Many of the interesting teamwork problems cannot be solved
analytically using the queuing theory since some of the strict
assumptions necessary for closed-form solutions do not hold.
However, it is possible to use DES to overcome the limitations
of analytical models. More importantly, DES modeling has the
advantage of capturing the process and dynamics of teamwork,
which is lacking in previous research. With simulation models,
we can test and compare proposed changes to the current sys-
tem, or new designs of the system at a significantly lower cost
than testing directly in real world.

This study modeled the teamwork in a dyad during supervi-
sory control of multiple robots. Since the operators were not
differentiated by role or task, the term team was not used in
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the traditional sense [7]. This paper is organized as follows.
Section II reviews previous research on teamwork and backup
behavior. Section III introduces the key model constructs. Sec-
tion IV presents the methodology, main results, and observations
from an experiment of teamwork during supervisory control of
multiple robots. Section V describes the DES model built using
the experiment data, as well as the comparison between model
outputs and experiment results. Section VI explores the role
of backup behavior using the DES model by varying task un-
certainty, operator capability, and the level of individual effort.
Section VII contains a discussion of the results and conclusions.

II. BACKGROUND

A. Backup Behavior

Backup behavior is critical to the effectiveness of teamwork.
It is positively related to team performance when teams have a
member with a large amount of workload [2]. Backup behavior
can improve performance outcomes by redistributing the work-
load within the team. More importantly, backup behavior affects
team processes to allow greater team adaptability in changing
situations and environments. On the other hand, some research
has found that backup behavior can be harmful when backup
providers neglect their own tasks, especially when workload is
evenly distributed [8].

In the behavioral markers of teamwork breakdowns proposed
by Wilson et al. [9], backup behavior is identified through three
aspects: 1) Did team members correct other team members’ er-
rors? 2) Did team members provide and request assistance when
needed? 3) Did team members recognize when one performed
exceptionally well? In this study, we focused explicitly on the
first two aspects of backup behavior.

Backup behavior is closely related to other factors affecting
teamwork. First, whether team members can shift the workload
within the team is largely determined by the team structure.
Second, backup behavior usually happens together with mutual
performance monitoring and communication. When team mem-
bers detect an error made by their teammates through mutual
performance monitoring and communicate about it, backup be-
havior can then correct the errors. These are discussed in the
later sections.

B. Team Structure

Team structure is an important factor that is hypothesized to
affect team effectiveness [10]. One aspect of team structure is the
“manner in which the task components are distributed among
team members” [11]. How the team is structured is closely
related to communication, coordination, and team performance.

The team structure that is suitable for a specific scenario
largely depends on the task characteristics and resources avail-
able [12]. For a team of operators working together with multiple
robots, two possible ways to organize the robots are as sectors or
as a shared pool [13]. Under the sector condition, each operator
exclusively controls a portion of all the robots. Under the shared
pool condition, operators share the control of all the robots
and service them as needed. Sector assignment, which is how

modern day air traffic control is architected, can reduce the
number of robots the operator must monitor and control. How-
ever, the shared pool condition offers a more flexible schedul-
ing advantage of load balancing since any operator in the team
can service any robot as needed, which is one important as-
pect of backup behavior. Previous research by Lewis and Wang
et al. [10] investigated the effect of team structure in an urban
search and rescue (USAR) setting. Although there was no signif-
icant difference on performance, teams that shared the control
of all robots were found to have slightly lower workload. In
addition, for monitoring applications, the shared pool offers a
redundant observer advantage, such that a second operator with
partially overlapping perceptual judgments may detect problems
missed by the first operator.

C. Mutual Performance Monitoring

Mutual performance monitoring is the ability to develop com-
mon understandings of the team environment and apply appro-
priate task strategies to accurately monitor teammate perfor-
mance [3]. It usually involves behaviors such as identifying
mistakes and lapses in other team members’ actions, and pro-
viding feedback regarding team member actions to facilitate
self-correction. Research has shown that individuals may not be
aware of their own performance deficiencies [14], [15]. Salas
et al. [3] proposed that it is the information gathered through
mutual performance monitoring that affects team performance
by identifying errors or lapses, and this information, expressed
through communication and backup behavior, boosts the team
performance.

D. Team Communication

Mutual performance monitoring and backup behavior are
usually facilitated by communication within the team [3]. Re-
search about group decision making [16] shows that in effective
decision-making groups, communication serves both promotive
functions that facilitate sound reasoning and critical thinking
as well as counteractive functions that prevent a group from
making errors. Communication relates to building an accurate
understanding of team members’ needs, responsibilities, and
expected actions [12], which is the foundation for mutual per-
formance monitoring. In addition, when an error or overload
is detected, communication is often required for information
exchange. Infrequent communication may not supply enough
information to achieve desired levels of performance.

On the other hand, communication takes time and carries a
coordination cost. Research has investigated the negative effects
of communication in terms of increased workload and decreased
performance [12]. It contributes a part of process loss, which
means team performance is lower than the combination of indi-
vidual performance due to the extra work on team coordination.
MacMillan et al. [12] investigated the cost of coordination and
communication in a team of six persons that are performing a
joint task force mission of air-based and sea-based operations.
They concluded that a lower need for coordination and a lower
communication rate were associated with better performance.
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Fig. 1. Overview of the DES model.

There is no simple answer to how much communication is
appropriate, because it is impacted by factors such as task char-
acteristics, team structure, level of workload, etc. [17], [18].
While frequency of communication about task and team rapport
relates to superior team performance, excessive word usage has
a negative association with team performance [19]. From the
aspect of supporting backup behavior, the effectiveness of com-
munication depends on whether the communication is needed at
the time. Communication causes backup providers to dedicate
resources on it, and thereby, reduces the amount of resources
that are available for other tasks [8]. If the workload is evenly
distributed, spending too much effort to communicate and pro-
vide backup could be harmful. If the workload is not evenly
distributed, the benefits of backup behavior may outweigh the
losses resulted from communication. To achieve effective team
performance, teams should communicate adequately and effec-
tively, using backup when needed. Conversely, teams should
communicate relatively little when backup is not needed.

III. DISCRETE-EVENT SIMULATION MODEL OF MULTIHUMAN

MULTIAGENT TEAM

The key constructs of DES models are events, arrival pro-
cesses, services processes, and queuing network structure. The
DES model for this effort was constructed under the assump-
tion that operators are acting in a supervisory control mode and
the robots in the team are highly autonomous. Robots should
function independently of the human most of the time, and re-
quire human interaction only intermittently. Operators function
as servers in the queuing model and serve the events generated
from the robots. The overall framework is shown in Fig. 1.

The events generated from the robots enter the queue and
wait to be served when the operators are busy. Operators select
the next event to be served from the queue. This task assign-
ment process is affected by the team structure of operators.
After the events are served, the model generates performance
outputs, which can be compared with empirical data. Communi-
cation between the teammates is modeled as two parts. Baseline

communication happens with a random interarrival time. The
other part of communication happens during task assignment
and error correction.

A. Arrival Process of Robot-Generated Events

Robot-generated events arise due to the nature of the mission
and robot capability [5], such as detecting a victim or getting
stuck and needing operator intervention. An event arrives to the
system and stays in a queue for a time T . An event is then either
served by the operator or exits the queue without being served
if it waits longer than T . Unlike independent arrival processes
in many queuing systems, the arrival of robot-generated events
usually depends on the system status. To model the dependent
arrival process, we limit the number of active events in the
system associated with each event stream to be one at any time.
In other words, a new event is generated from this stream only
if there is no event from the stream in the queue or being served.
The interarrival times of events are between the completion of
service/reneging from the queue and the arrival of the next event.
These interarrival times are described by a random variable Λi ,
where i stands for event stream i.

Sometimes, events generated are not identical. In this situa-
tion, a random variable C following a multinomial distribution
is used to describe the categories of events. New events are
generated according to the interarrival time Λi and assigned an
event category from C.

B. Service Process of a Single Operator

Each event is served for a service time described by random
variable M . The service process typically involves several steps.
In this case, the service time M = μ1 + μ2 + · · · + μn , with μi

being the time required for step i. The time an operator spends
working on an event is associated with an opportunity cost of
missing other important events waiting in the queue. Limiting
the service time on one event may result in an increase on the
number of tasks processed. Although the error rate may increase,
it is possible that the overall mission performance is improved.
This could be modeled by making the event exit from the server
when the time limit is reached. In this situation, an output from
processing this event may not be generated due to the shortened
service time.

The queuing policy determines the order in which multiple
events that are waiting in the queue are served. Several common
ways to pull an event from a queue include: first-come-first-
serve, last-come-first-serve, and random selection. They can be
used in the DES model according to characteristics of different
task scenarios.

C. Team Structure and the Shift of Workload

Queuing networks are systems with multiple queues and ser-
vice centers that are connected by customer routing. By con-
necting queues and service centers in different ways, various
team structures can be modeled. For teams organized under the
Sector condition, each operator has his or her own queue. Robot-
generated events enter the queue of one operator according to
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the task assignment, which is determined before the start of
mission. Since operators only pull events from their own queue
to serve, shifting of workload is impossible. For teams orga-
nized under the shared pool condition, events generated from
the robots all enter the same queue, and operators pull events
from this single common queue to serve. In this case, shifting
of workload is possible.

In the literature of the queuing theory, whether to have a sin-
gle common queue or multiple separate queues has been inves-
tigated. For a queuing system of s servers with Poisson arrival
process and exponentially distributed service time, comparison
has been made between having s queues and one single com-
mon queue based on the steady-state average waiting time. It
was proved that, with the same arrival rate and service rate, the
system with multiple servers and a single common queue has
a shorter average waiting time than assigning a separate queue
to each server [20]. The main reason for this advantage is the
shifting of workload between multiple servers enabled by the
single queue. Pooling multiple queues into a single queue may
not always be beneficial [21]–[23]. In operator teams that su-
pervise multiple robots, factors such as differences in individual
capability, uncertainty in task load and individual level of effort
may impact the choice of team structure.

D. Mutual Performance Monitoring and Communication

In our DES model, mutual performance monitoring is mod-
eled as a higher probability of correcting an error when there
is communication. With communication, an operator is able
to correct his teammate’s errors, in addition to his own er-
rors. However, as discussed previously, communication has been
shown to have both a positive and negative influence on team
performance.

We modeled communication by separating its impact into
positive and negative aspects. Theoretically, performance im-
proves when positive impact outweighs the negative impact and
vice versa. From the negative aspect, communication time is
modeled as process loss. When there is communication during
the service process, the service time is extended by the dura-
tion of communication. If the communication is too often or
too long, number of services completed within a certain time
period is decreased. From the positive aspect, the benefit of
communication is modeled together with mutual performance
monitoring. When an error is detected, it is corrected with a
probability P (Correction) = p without communication. If a
communication event happened at the time, the probability is
increased so that P (Correction) = p + p′.

IV. MULTIHUMAN MULTIROBOT TEAM EXPERIMENT

This experiment investigated the effect of team structure
and scheduling notification on participants’ team performance,
workload and communication in an USAR task. Participants su-
pervised multiple simulated robots, manipulating and viewing
the imagery the robots provided in order to detect and mark the
locations of victims. Empirical data were collected to obtain
insight into teamwork during supervisory control of multiple
robots and support the development of a simulation model.

A. Participants

The study, IRB approved, adhered to ethical guidelines for
the treatment of human participants. A total of 48 participants,
19–47 years old, participated in the experiment. The average age
was 26.6 years, with a standard deviation (SD) of 5.5. Among
them, 19 were female and 29 were male. Thirty-three of the
participants were undergraduate or graduate students, and 15
had other occupations. Twenty-two of the participants did not
play video games regularly. The average time playing video
game per week for the remaining 26 participants was 4.1 h
(SD = 4.9). The correlation between hours spent on video
games and average individual performance was not significant
(r = 0.129, p = 0.354). Of all 24 teams formed by the 48 par-
ticipants, team members in four teams knew each other before
the experiment. The other 20 teams were formed by strangers.

B. Independent Variables

A 2 × 3 mixed design was used to evaluate team structure
(two levels) and scheduling notification (three levels). Team
structure was a between-subject variable with 24 participants
assigned to one of the two types of team structure.

1) In Sector (S) teams, each participant controlled half of all
the robots, for a total of 12 robots each. Locations of their
teammates’ robots were shown on the map, but video feed
from their teammates’ robots could not be seen.

2) In Pool (P) teams, two participants shared the control of
all the robots. They were able to see the video feed of all
robots and control any robot not under the control of a
teammate.

The level of interdependence was not high in both team struc-
tures. Independent works of team members were combined to
represent team output [24]. However, Pool teams allowed more
coordination and communication between the team members
comparing with Sector teams.

The second scheduling variable evaluated the utility of a cue
indicating that attention should be switched to a different robot.
This variable is of interest because previous work in automated
visual search task allocation for single operator-multiple un-
manned vehicle environment has shown that automated schedul-
ing notification can improve operator performance in terms of
probability of detection for overall mission and decrease work-
load by influencing switching times [22]. This form of schedul-
ing notification was hypothesized to be beneficial also in the con-
text of team scenarios, where resources were distributed across
operators, who could benefit from recommendations for when
to switch to new search tasks. For this experiment, scheduling
notification was employed that issued text notification layered
over the video panel and a beeping sound at an appropriate time
to cue the participant to interrupt the current search pattern for
one robot and switch to a different robot.

Each participant completed one session with each level of
the scheduling notification. The order these three levels were
experienced was counterbalanced across participants. The three
levels of scheduling notification were the following.

1) Off condition, no cue was administered. No decision
support was provided.
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Fig. 2. Map based on occupancy grid.

2) Suggested condition gave a text notification on the inter-
face with a beeping sound when the participant spent more
than 30 s on a robot. Participants were trained that the cue
signaled that attention should be switched to a different
robot. However, this cue can also be ignored.

3) Enforced condition also gave the cue when the participant
spent more than 30 s on the same robot, but also, after
another 5 s had elapsed with the same robot, automatically
switched to another randomly selected robot.

Thirty seconds was chosen as the threshold criteria based on
a previous study [10], [25], [26]. In previous studies on visual
search tasks [25], the possibility of finding a target was shown to
decrease as more time was spent on the visual search task. The
probability was estimated to be 0.8 for 26 s spent on searching,
and then, declined. In another experiment for USAR tasks [10],
the mean time from a robot being selected to a victim being
marked under autonomous control was approximately 35 s. We
selected 30 s as the threshold so that the participant was given
a reasonable amount of time to finish the task if a victim was
successfully located and yet was prevented from spending too
much time on a low probability search task if the participant
failed to locate the victim. This threshold was validated in pilot
tests as well.

C. Testbed

USARSim, a robotic simulation performing USAR tasks [27],
was used to provide the underlying simulation for the testbed.
Multirobot control system (MrCS), a multirobot communica-
tions and control infrastructure with an accompanying user in-
terface was used as the control interface. MrCS provided fa-
cilities to start and control robots in the simulation, displaying
camera, and laser range finder output, and supporting interrobot
communication through Machinetta, a distributed multiagent
system developed at Carnegie Mellon University Pittsburgh,
PA, USA [28].

In MrCS, each robot was capable of updating a map, planning
its routing, and sending video feed to participants. An occupancy
grid was used to represent the joint robot team knowledge of
the environment and available information about the planned
paths of other robots, as shown in Fig. 2. Possible locations were
generated and filtered based on the expected information gain for
being at that location. Edges were generated between locations
if there was a sufficiently high possibility to move between the

locations. A branch-and-bound search was performed across
the network of possible locations and edges for the path that
maximized the expected information gain. Plans were allowed to
backtrack with no additional value added for visiting a location
multiple times. When a robot finished planning, it shared its
planned path with some nearby robots to allow them to both
avoid collisions and search different areas.

MrCS was displayed on a dual display computer as shown in
Fig. 3. The robot camera list on the left screen shows thumbnails
of camera feeds. Video panel shows a video feed of interest.
The teleoperation panel allows teleoperation and camera pan
and tilt. The right shows the current area map with the posi-
tions of robots, and allows participants to mark the location of
victims.

In this experiment, robots were started automatically in dif-
ferent regions and explored the environment based on an au-
tonomous path planner. The participants’ tasks were to identify
as many victims as possible and mark their locations on a map.
When a victim appeared in the camera of a robot and was de-
tected by the participant, he or she could select a robot either
from the robot camera list or by clicking the icon of the robot
on the map. When a robot was selected, the thumbnail of its
camera was highlighted with a thick black border, the video
feed from its camera was shown in the video panel, and its field
of laser was highlighted on the map. The participant could stop
the selected robot and move the robot manually using the tele-
operation panel to bring the victim back into the camera view
or fine tune the robot’s position if necessary. The participant
could then double click on the map to mark the position of this
victim.

If the participant wanted to delete the mark, he or she clicked
the mark and pressed the Del button on the keyboard. When no
robot was under direct control, the participant continued mon-
itoring all the robots while exploring the environment until a
new victim in a camera view was noticed. Most of the time
robots navigated using autonomous path planning by default,
and the participant only needed to monitor the thumbnails of
video feeds. However, the participant could also choose to man-
ually control the robots using the teleoperation panel to send
them to a specific unexplored place.

The team members were located in the same room, each
with one display station. The stations were located so that it
was difficult to view the teammates’ display in detail, although
quick glances were allowed. For Pool teams, participants could
see video feeds and locations of all robots. The status of the
robot was shown on top of each thumbnail of camera view, as
highlighted in Fig. 3.

The default status was AUTONOMOUS, which means the
robot was navigating automatically. When one of the team
members was teleoperating the robot, its status was changed
to TELEOP on both team members’ display. As a result, the
other team member would know that this robot was controlled
by his or her teammate. Conflict may happen when two oper-
ators tried to teleoperate the same robot, which then required
verbal communication between team members. In Sector teams,
video feeds and locations of 12 robots were shown on the dis-
play. Under both team structure conditions, participants could
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Fig. 3. Interface for controlling robots.

see their marks and their teammates’ on the map in different
shades of red. Participants could communicate with their team-
mates verbally with no restrictions.

Scheduling notification was administered by layering text on
top of the video feed in the video panel together with a beeping
sound generated by repeating the Windows system default beep
sound for 5 s. Under Off condition, there was no scheduling no-
tification. In Suggested condition, participants could choose to
follow the notification and move on to a new robot, or to ignore
it and stay with the current robot. If ignored, the text and the
beeping sound lasted for 5 s, and then, disappeared. No more no-
tification would be administrated afterwards. For the Enforced
condition, the system would switch to another randomly selected
robot 5 s after the original notification. Whenever a new robot
was selected, either by the participant or the system, the pre-
vious robot would continue to navigate using autonomous path
planning. The new robot selected was in autonomous mode by
default. The autonomous path planning would stop only if the
participants chose to teleoperate.

D. Procedure

The experiment began with a 15-min training session prior
to three 25-min test sessions. A training session allowed the
participants to practice the operation of GUI, especially teleop-
eration. Enforced scheduling notification was used during this
training session because it was the most complex one among
three conditions. No training for communication strategy was
provided. Participants were tested in groups of two in the same
room. Each participant controlled either 12 (Sector) or all 24
(Pool) robots, depending on their team structure assignment.
Each pair of participants performed all three scheduling noti-
fication conditions. The three conditions were randomized and
counterbalanced to limit any learning effect. Audio and screen
recordings were collected during the experiment.

TABLE I
DEPENDENT VARIABLES

E. Dependent Variables

Dependent variables included task performance metrics, op-
eration measures, communication as a team measure, and sub-
jective workload. All the dependent variables are summarized
in Table I, along with their definitions.

The criterion for a successfully marked victim was that the
position of the mark was within 1 m of the true position of the
victim, which was the same criterion as in the study of Lewis
et al. [10]. In order to find the time when a victim appeared in
the camera, we drew the visible areas of all victims using ray
tracing. If the robot was in the visible area for a victim, and
its field of view contained the victim, this victim was declared
visible on this robot’s camera. By calculating these quantities,
we obtained the number of victims missed, and recorded the
display-to-mark time. Sometimes, participants deleted marks
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when a victim was not marked accurately or was marked more
than once. Participants’ actions of marking, deleting, as well
as teleoperation were recorded in the system log, and used to
calculate the dependent variables. Total communication time,
average duration, and frequency were measured in both team
structures. Subjective workload ratings were obtained through
the NASA-TLX [29], which is a rating along six subdimensions.
The dependent variables were analyzed using either analysis of
variance (ANOVA) or nonparametric tests if they did not satisfy
the ANOVA assumptions of normality and/or homogeneity.

F. Results

This section introduces the main results of the experiment,
including team performance and evidence of backup behavior,
as well as communication and error correction. Detailed results
on the experiment can be found in a previous paper [30]. This
paper extends the previous one by building a DES model based
on the experiment data and exploring several scenarios using
the model, presented in Sections III, V, and VI. Data from the
training session were not included in the analyses. A significance
level of 0.05 was used for the analyses.

1) Task Performance and Operation Measures: Team struc-
ture had no significant impact on task performance in terms of
number of victims found, number of errors, and number of vic-
tims missed. For number of deletes, Pool teams (Mean = 8.3,
SD = 5.49) tended to delete more than Sector teams (Mean =
6.0, SD = 3.02), although the effect of team structure was not
significant (Z = −1.838, p = 0.066, r = −0.217). This indi-
cates that Pool teams corrected themselves more often, because
the marks were in wrong locations or duplicated marks were
made for the same victim.

Team structure had a significant effect on the total time of
teleoperation (F (1, 138) = 10.68, p = 0.001, n2

p = 0.072).
Sector teams (Mean = 1166.7, SD = 194.20) spent more time on
teleoperation than Pool teams (Mean = 1055.4, SD = 236.66) on
average. No significant effect was found for teleoperation dura-
tion, teleoperation frequency, display-to-mark time or select-to-
mark time. The interaction effect of team structure and schedul-
ing notification was not significant on any of the dependent
variables.

Scheduling notification did not improve or decrease perfor-
mance, but had an influence on working process. Scheduling
notification had a significant effect on duration (F (2,138) =
21.64, p < 0.001, n2

p = 0.239) and frequency of teleoperation
(F (2,138) = 16.62, p < 0.001, n2

p = 0.194), due to the way
scheduling notification was implemented. With scheduling noti-
fication, the duration of teleoperation dropped and the frequency
increased. The Enforced condition resulted in the shortest dura-
tion and highest frequency of teleoperation, followed by the Sug-
gested and Off conditions. The effect of scheduling notification
on total time of teleoperation was not significant (F (2,138) =
2.61, p = 0.078, n2

p = 0.036).
Scheduling notification helped the participants to notice

and mark victims faster when they appeared in the camera,
which is important for such a time-critical task environment.

Fig. 4. Minimum and maximum workload under the two-team structures.

In Sector teams, scheduling notification had a significant effect
on mean display-to-mark time (F (2, 69) = 3.91, p = 0.024,
n2

p = 0.102). The teams under Suggested condition had the low-
est mean display-to-mark time (Mean = 88.0 s, SD = 58.9 s),
followed by Off condition (Mean = 103.2 s, SD = 59.1 s) and
Enforced condition (Mean = 128.6 s, SD = 70.8 s). The in-
crease in time under the Enforced condition may be due to the
interruption in the current operation and extra time to regain
situation awareness.

In Pool teams, the effect of scheduling notification was in-
significant, which suggest that display-to-mark time was af-
fected by team process. One team member could start working
on a robot with a victim in view when the other was busy. For
select-to-mark time, scheduling notification was found to have
a significant effect (F (2, 138) = 24.77, p < 0.001, n2

p = 0.264),
shortening the time to finish a task.

2) Evidence of Backup Behavior: Subjective workload using
NASA-TLX was analyzed using nonparametric tests. Box plots
of subjective workload under different conditions are shown
in Fig. 4. Mann–Whitney tests for the effect of team structure
showed a significant effect on workload (Z = 2.036, p = 0.042,
r = 0.170). Pool teams demonstrated lower workload on av-
erage than Sector teams. When analyzing each dimension of
workload (mental demand, physical demand, temporal demand,
performance, effort, and frustration) separately, Pool teams had
a significant lower rating on effort (Z = 2.148, p = 0.032,
r = 0.179) and frustration (Z = 2.799, p = 0.005, r = 0.233).

This was consistent with a previous study [10], in which a
slight advantage in workload was observed favoring the Pool
structure. One reason may be that in the Sector teams, there
was no opportunity for backup. Furthermore, in Pool teams, it
was possible to balance the workload according to operators’
individual abilities. When one operator was better at finding
victims, it was possible he/she could share the burden of the
less skilled teammate and did not report excessive workload.
We analyzed the maximum, minimum, and averaged workload
of each team based on two team members’ individual work-
load ratings. This showed that maximum workload of the team
members in Pool teams was significantly lower than in Sector
teams (F (1, 68) = 6.6, p = 0.012, n2

p = 0.089), while mini-
mum workload did not differ significantly, as shown in Fig. 4.
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Fig. 5. Difference on individual performance within two-team structures.

This result, combined with the significantly larger difference on
individual performance (number of victims found) in Pool teams
(F (1,68) = 4.72, p = 0.033, n2

p = 0.065) as shown in Fig. 5,
suggests workload balancing processes or backup behaviors in
Pool teams.

3) Communication and Error Correction: During the exper-
iment, participants were allowed to talk with each other. In such
a high workload scenario, almost all the communication was
mission related. Some teams discussed what strategies to use
when exploring the area, updated their status with the teammate,
requested their teammates’ status or shared experiences about
robot control. In contrast, some teams did not communicate at
all. An analysis of the time (seconds) spent on communication
showed that team structure had a significant effect (F (1, 66) =
12.53, p < 0.001, n2

p = 0.160). Pool teams (Mean = 177.7,
SD = 198.74) expectedly communicated more than Sector
teams (Mean = 53.44, SD = 80.97), on average.

The four teams with members that knew each other before the
experiment tended to communicate more comparing with other
teams. The effect of team structure on communication time was
still significant when this factor was controlled. Pool teams also
had significantly longer communication duration (Mean = 5.80,
SD = 5.04, F (1,66) = 5.85, p = 0.018, n2

p = 0.081) than Sector
teams (Mean = 3.37, SD = 3.00), and higher frequency (Mean =
31.17, SD = 41.50, F (1,66) = 8.66, p = 0.004, n2

p = 0.116)
than Sector teams (Mean = 9.50, SD = 13.46). Scheduling
notification did not have a significant effect on communication
time (F (2,66) = 0.01, p = 0.986, n2

p < 0.001).
Further analyses on the correlation between communication

with team performance and subjective workload revealed that
communication time was moderately negatively correlated with
errors (r =−0.309, p = 0.008). In other words, teams that com-
municated more tended to make fewer errors. This correlation
existed even if we controlled for whether the teammates knew
each other (r = −0.280, p = 0.018). This negative correla-
tion between communication time and number of errors existed
in Pool teams but not in Sector teams. This result, combined
with the larger number of deletes in Pool teams, suggests that
these participants engaged more in mutual performance moni-
toring, facilitated by communication. No significant correlation
was found between communication time and number of vic-
tims found, number of deletes, number of victims missed, or
subjective workload ratings.

V. DISCRETE-EVENT SIMULATION MODEL REPLICATION

A DES model was built based on the process data and obser-
vations from the experiment to simulate team performance in
these search and rescue tasks. In order to determine the model’s
ability to describe the observed data, we compared the DES
model outputs with the experimental results. Several datasets
were recorded in the experiment and used to fit probability dis-
tributions applied in the model, as shown in Table II.

Robot-generated events occurred when victims appeared in
the robot camera. Although all the robots were the same type,
they were started in locations with different victim density.
We modeled the interarrival time of each robot individually
to account for this difference. Another attribute of the robot-
generated events was event identity (ID), which corresponded
to different victims in the experiment. A victim already marked
may appear in the camera again, which may be ignored or re-
processed to check for an error. This was modeled by filtering
the arrived events by their ID. Event ID was generated from a
Multinomial distribution with n = 34.

Performance measures generated from the model were num-
ber of victims found, number of errors, number of deletes, and
number of victims missed. In this model, the event when a vic-
tim appeared in the camera was defined as a robot-generated
event. These events enter the queue, and were then, served by
operators. Events that exit the queue without being served were
measured as number of victims missed. Events processed were
separated as victims found or errors based on a Bernoulli distri-
bution. An event arrived with its ID already in the error list was
defined as error detected in the model. In Sector teams, operators
corrected one’s own error by a probability P(Correction) = p.
In Pool teams, the common queue made it possible to detect and
correct the teammate’s error as well as one’s own, during which
communication was often required. This was modeled by an in-
crease of P(correction) to p+p′ when communication happened
during error correction. To correct an error, operators deleted a
wrong mark and added a correct one, which was measured by
number of deletes. The error correction process is presented in
Fig. 6.

Sector teams were modeled by using two different queues,
each for one operator. Operator 1 served events generated by
robot 1–12, and operator 2 served events generated by robot 13–
24. Pool teams were modeled by using a single common queue
for the two operators. To model the scheduling notification,
we added a time limit of 30 s to the service time. For Suggested
condition, service was stopped at 30 s if the operator followed the
system recommendation with a probability 0.7. For the Enforced
condition, service was stopped at 30 s. If the service was stopped,
it was possible that the service did not generate a victim found
or an error, the probability of which is set to be 0.6.

We compared the team performance measures generated by
the model with those collected in the experiment. One thousand
trials were conducted using the DES model under each combi-
nation of team structure and scheduling notification mode. Fig. 7
shows the comparison between simulation outputs and experi-
ment results of Sector [see Fig. 7(a)] and Pool [see Fig. 7(b)]
teams under Off notification condition with their standard error,
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TABLE II
MODEL PARAMETERS AND DATA RECORDED DURING THE EXPERIMENT

Fig. 6. Error correction process.

and 95% confidence intervals with a modified degree of free-
dom [31] for the difference between simulation outputs and
experiment results are included. These confidence intervals con-
tain zero, indicating no significant differences between simula-
tion outputs and experimental results. The comparison under
Suggested and Enforced conditions showed similar results, as
listed in Table III. These indicate that the model can successfully
capture the essential elements of teamwork and replicate the ex-
perimental results on team performance under all team structure
and notification conditions. The match between the model and
the experiment provides a foundation for further exploration
using the model.

Communication time as an important team process measure
was also compared. Communication is difficult to model. Al-
though there is much research about communication, it is un-
clear when people will communication, what they will com-
municate, and how that will impact the team performance. In
the DES model, we simplified the communication as one spe-
cial type of event. As observed in the experiment, Sector teams
communicated less than Pool teams because the operators were
less interdependent. Based on this observation, we modeled the
baseline communication as an exogenous process with an in-
terarrival time estimated based on communication data in the
Sector teams collected in the experiment. In Pool teams, we
modeled another two components of communication in addi-
tion to the baseline communication: communication during task

Fig. 7. Comparison between model outputs and experiment results for perfor-
mance in (a) Sector teams with Off scheduling notification, and (b) Pool teams
with Off scheduling notification.

assignment and during error correction. Communication dura-
tion was modeled with an Exponential distribution estimated
from experiment data. The comparison between simulation out-
puts and experiments results for communication time is shown
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TABLE III
COMPARISON OF MODEL AND EXPERIMENT

Fig. 8. Comparison between model outputs and experiment results for com-
munication time.

in Fig. 8, which shows the DES model replicated the experiment
results of communication time.

VI. EXPLORING BACKUP BEHAVIOR USING THE

DISCRETE-EVENT SIMULATION MODEL

With confidence in the DES model after the comparison,
we simulated three scenarios using the DES model to further
investigate backup behavior: the uncertainty in task load, the
difference in individual capability and the level of individual
effort. We wanted to observe whether the team members could
back up each other and adapt to the uncertainty by providing
assistance when needed. We analyzed the shift of workload in
Pool and Sector teams under these scenarios.

A. Uncertainty in Task Load

Uncertainty in task load is an important factor that affects
the balance of workload within the team. In the real world,

Fig. 9. Impact of task load uncertainty.

tasks are rarely evenly assigned to team members. In the search
and rescue scenario, operators do not know where victims are
beforehand in order to make a plan for the search. As a result,
teams have to adapt during the execution of tasks.

In the original DES model, half of all the victims would
appear in the camera of robot 1–12, and the other half in the
camera of robot 13–24. To bring more uncertainty to the task
load, m victims appeared in the camera of robot 1–12 where
m is generated from a uniform distribution, and the remaining
victims appeared in the camera of robot 13–24. One thousand
simulation trials were run.

The percentage of events processed by operator 1, and the
ratio of busy time of operators were compared in Pool and Sector
teams (see Fig. 9). The ratio was calculated as the measure on
operator 1 divided by the sum of two operators. A ratio close
to either zero or one indicates the overload of an operator. As
shown in Fig. 9, the percentage of events processed by the
two operators is scattered in Pool teams. In Sector teams, the
percentage increased as the number of victims appeared in robot
1–12 increased. The ratio of busy time showed a similar pattern
with a larger deviation.

The simulation results can be interpreted from two aspects.
First, since operators share the control of all robots, it does not
matter whether one group of robots found more victims. Backup
behavior can be easily performed to balance the workload. In
other words, Pool teams show adaptability with the uncertainty
in task load. On the contrary, in Sector teams, an operator ex-
periences more workload if the robots find more victims. His or
her teammate cannot offer much help even if idle.

Second, Pool teams have a larger standard deviation for the
ratio of events processed and ratio of busy time comparing with
Sector teams. Sector teams could have an advantage in main-
taining a reasonable workload balance when the task load has
little variability. However, when there is large uncertainty in task
load, Pool teams have an advantage because of the adaptability
enabled by backup behaviors.
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Fig. 10. Impact of individual difference. (a) Sector (b) Pool.

B. Difference in Individual Capability

Difference in individual capability was simulated by varying
the service time of operators. The distribution for operator 1 was
unchanged. The service time of operator 2, originally the same
for both, was increased from two to six times of the original.
The percentage of change on the number of victims found, per-
centage of change on the number of victims missed, the ratio
of events processed by operators, and the ratio of operator busy
time were compared. These ratios were calculated as the mea-
sure of operator 2 divided by operator 1. The busy time refers
to the total service time. Although operators were sometimes
actively searching instead of just monitoring during their idle
time, this free searching time is not included in the model out-
put. We assumed that the two operators put similar effort into
free searching. Results generated from the model are shown in
Fig. 10.

From the results, we can see Sector [see Fig. 10(a)] teams and
Pool [see Fig. 10(b)] teams react differently. In Sector teams, the
busy time of operator 2 increased rapidly to around three times
of operator 1, while the number of events processed by operator
2 was a little bit less than that of operator 1 with the increase of
service time. This means operator 2 had to work longer because
of the slow service and the lack of help from operator 1.

In Pool teams, because the two operators shared the con-
trol of all robots, it was easier to shift the workload within the
team. This was confirmed by the DES model outputs. In Pool
teams, the busy time of operator 2 increased only to around
1.5 times of operator 1, while the number of events processed
by operator 2 was much less than that of operator 1 due to the
increase of service time. This suggested a shift of workload in
Pool teams when one operator was overloaded due to his/her

Fig. 11. Impact of reduced individual level of effort. (a) Simulated results.
(b) Concept illustration.

individual capability. The shift of workload also had an impact
on team performance. The percentage of change on the number
of victims found was small in both types of teams. However,
Pool teams had a slower increase on the number of victims
missed comparing with Sector teams. Pool teams had an advan-
tage through backup behaviors, which could shift the workload
within the team when one operator was slower.

C. Individual Level of Effort

Although Pool teams have an advantage through backup be-
haviors, they may be affected when some individuals in the team
expend less effort when working collectively. In addition to idle
and busy states, we simulated individual level of effort by adding
a lazy state for operator 2, during which he or she was neither
working on tasks nor responding to tasks in the queue. If the
operator is idle, he or she enters the lazy state with probability
P(lazy). The lazy state lasts for 5 s. Fig. 11(a) shows the impact
on the average percentage of events processed by operator 1 in



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS

Pool teams when P(lazy) of operator 2 changes from 0.2 to 0.6.
As P (lazy) increases, the curve of operator 1 is shifted upward.
In other words, operator 1 processes more events on average if
operator 2 is lazy.

With reduced individual level of effort, the degree to which
Pool teams are better than Sector teams in terms of balancing
workload depends on how the tasks arrive. Fig. 11(b) is a sim-
plification of Fig. 11(a) to illustrate the concept. We represent
average percentage of events processed by operator 1 in Pool
teams as rP , and in Sector teams as rS . In the shadowed area of
Fig. 11(b), max (rp , 1 − rp) > max (rS , 1 − rS ), which means
workload is more evenly distributed in Sector teams. Beyond
this range, max (rp , 1 − rp) < max (rS , 1 − rS ), which means
workload is better balanced in Pool teams. Based on this, we
can conclude that Sector teams are better when the tasks arrive
to the two operators evenly, especially when there is reduced in-
dividual level of effort in Pool teams. However, Pool teams deal
with extreme difference in task load better than Sector teams,
even with reduced individual level of effort.

VII. DISCUSSION AND CONCLUSION

In the experiment, participants’ mean ratings indicated
lower workload with the Pool structure as compared with the
Sector structure, even though task performance was similar
across the two types of team structure. Pool teams also com-
municated more and balanced workload among team members.
These conclusions were supported by the lower maximum work-
load and larger difference on individual performance in Pool
teams. This suggests the reduced subjective workload under
the Pool condition occurred because teammates could provide
backup if needed. In addition, the shared control of robots pro-
moted communication in teams under the Pool structure, which
was also good for task performance since teams with more com-
munication tend to make fewer errors. The reason may be that
they corrected each other via communication, which led to fewer
errors.

A DES model that is based on the queuing theory was con-
structed to simulate the teamwork in supervisory control of
multiple robots. The outputs from the model replicated the ex-
periment results on team performance measures. Backup be-
havior was investigated by varying the uncertainty in task load,
the individual capability and the individual level of effort. In all
scenarios, Pool teams show an advantage on balancing work-
load through backup behaviors. Although Pool teams have an
advantage on balancing workload as suggested by both the ex-
periment and the DES model, we must consider other factors,
like team strategies and coordination cost when deciding which
team structure to use. Pool teams gain the advantage of balanc-
ing workload with the cost of increased coordination on task
assignment. In our simulation, we found that the advantage of
backup behaviors is meaningful only when the task load is un-
evenly distributed. This conclusion based on simulation results
is consistent with several empirical research on backup behav-
iors [8], [32]. If the task load is evenly distributed with low
uncertainty, backup behaviors are not necessary.

Team members also employed certain team strategies to cope
with the increased coordination cost. In the experiment, we ob-
served that some operators in Pool teams would preplan on
which robots to control via verbal communication, even if the
plan changed during the task execution. For example, some
divided the robots by robot ID, and some divided by robot loca-
tion. Other operators reported the robot ID to their teammates
whenever they started on a new robot. These team strategies
reduced the effort for team coordination while still leaving a
possibility for balancing workload. However, as the team size
increases, we would expect an increase on the cost and difficulty
of coordination. In addition, reduced individual level of effort is
easier in Pool teams than in Sector teams. With reduced individ-
ual level of effort, the advantage of Pool teams is diminished.
To better reflect the tradeoffs of these factors, these factors will
be modeled in future research to support the design of teams.

The DES model can be used as a useful and efficient tool
to assess the impact of change on performance and share of
workload under different team structures. In this study, a dyadic
team was modeled. In the future, we would like to investigate
whether this model structure can be extended for teams of three
or more members.
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