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Research Question

Can neural networks be used to conduct a
preimage attack?




Hypothesis

Linking together neural networks that are
individually trained on data from each

round of the cryptographic hash SHA-1
will reduce the complexity each network
needs to model, allowing deduction of the
preimage.




Knowledge Gap

e Previous work using neuro-cryptanalysis
for preimage attacks against modern,
non-lightweight hashes has been mostly
ineffective (Goncharov, 2019; Liu et al.,

2021)

o Attacked the entire hash with a single
neural network

Failed to take into account the internal
structure of the algorithm




Analysis

e Accuracy remained at O regardless of any
modifications to hyperparameters or
training data

Fundamental issue: some information is
lost in each round, so all candidate
previous rounds are equally plausible

Major limitation: lack of computing power
resulted in datasets insufficient to train for
a modern hash effectively




Conclusion

e Aimed to leverage machine learning
advancements for preimage attacks, but
all tested neural network architectures

were completely ineffective in reversing
single rounds

Future research may explore combining
neural network chains with
meet-in-the-middle attacks, which have
similar strategic paradigms




e Clarified an approach that does not work;

research in classical or differential-neural
cryptanalysis may be more fruitful
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Layer Amount Learning Rate Round Epochs Batch Size Loss Train Accuracy Test Accuracy Datase
3 0.001 2 11 32 377.5233 0 0
3 0.001 2 11 64 3776703 0 0
7 0.01 2 11 64 377.4963 0 0
3 0.001 2 11 64 377.5508 0 0
3 0.001 16 11 64 405.3415 0 0
3 0.01 16 11 64 405.2192 0 0
3 0.01 2 11 64 379.9132 0 0
3 0.01 3 11 64 428.5194 0 0
3 0.01 3 50 64 428.6604 0 0
3 0.01 3 11 64 438.9447 0 0 restrict
3 0.01 3 11 64 399.1621 0 0 1 millio
3 0.01 3 11 64 468.2508 0 0 fuzzy d
Layer Amount Learning Rate Round Epochs Batch Size Loss Train Accuracy Test Accuracy Datase
3 0.01 3 11 64 428.6908 0 0
3 0.01 3 11 64 439.0123 0 0 restricte
3 0.01 3 11 64 399.1277 0 0 1 millio
3 0.01 3 11 64 468.1121 0 0 fuzzy d
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Bit Accuracy
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.49
1 input 0.46
dataset 0.51
ta 0.48

Bit Accuracy
0.49
I input 0.46
0.51
a 0.48

Table 1: Accuracies and loss for
multilayer feed-forward neural
networks with varying
hyperparameters and training
datasets

Table 2: Accuracies and loss for
recurrent neural networks with
varying hyperparameters and training
datasets
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Generate Data
Inputs were randomly generated and
hashed with a custom implementation of
the SHA-1 hash (both normal and fuzzy) in
Java that returns internal states for each
round.

Proce

Single Layer Learning
Feed-forward and recurrent neural
networks were programmed in PyTorch
and trained to reverse single layers from
the data.



edure

Chaining Models
| Sufficient Reverse internal state history iteratively
ch : accuracy is Yes and compare against known preimage,
om reached extending chain length until trivial
accuracy.

ON

Approach is Not Successful Attack

Effective




