Using Neural Net Launch a Preim Reduced-Ro

Erica [

Advisor: Kevin Cr

etwork Chains to mage Attack on ound SHA-1

Dong Crowthers, PhD

Research Question

Can neural networks be used to conduct a preimage attack?

Hypothesis

Linking together neural networks that are individually trained on data from each round of the cryptographic hash SHA-1 will reduce the complexity each network needs to model, allowing deduction of the preimage.

Knowledge Gap

- Previous work using neuro-cryptanalysis for preimage attacks against modern, non-lightweight hashes has been mostly ineffective (Goncharov, 2019; Liu et al., 2021)
 - Attacked the entire hash with a single neural network
- Failed to take into account the internal structure of the algorithm

Analysis

- Accuracy remained at 0 regardless of any modifications to hyperparameters or training data
- Fundamental issue: some information is lost in each round, so all candidate previous rounds are equally plausible
- Major limitation: lack of computing power resulted in datasets insufficient to train for a modern hash effectively

Conclusion

- Aimed to leverage machine learning advancements for preimage attacks, but all tested neural network architectures were completely ineffective in reversing single rounds
- Future research may explore combining neural network chains with meet-in-the-middle attacks, which have similar strategic paradigms

 Clarified an approach that does not work; research in classical or differential-neural cryptanalysis may be more fruitful

References

Goncharov, S. V. (2019). Using fuzzy bits and neural networks to partially invert few rounds of some cryptographic hash functions. arXiv. https://doi.org/10.48550/ARXIV.1901.02438

- Greydanus, S. (2017). *Learning the Enigma with recurrent neural networks* (arXiv:1708.07576). arXiv. http://arxiv.org/abs/1708.07576
- Liu, G., Lu, J., Li, H., Tang, P., & Qiu, W. (2021). Preimage attacks against lightweight scheme Xoodyak based on deep learning. In K. Arai (Ed.), Advances in Information and Communication (Vol. 1364, pp. 637–648). Springer International Publishing. https://doi.org/10.1007/978-3-030-73103-8_45
- Sharma, N., & Bhatt, R. (2018). Privacy preservation in WSN for healthcare application. *Procedia Computer Science*, *132*, 1243–1252. https://doi.org/10.1016/j.procs.2018.05.040
- So, J. (2020). Deep learning-based cryptanalysis of lightweight block ciphers. *Security and Communication Networks*, 2020, 1–11. https://doi.org/10.1155/2020/3701067

Acknowledgements

Thank you to Dr. Thomas Peyrin, Joshua DeOliveira, my friends, my parents, everybody who has given me feedback, and Dr. Crowthers for supporting and advising me in my research.

Main Ta

- Neither feed-forward neural r
 - networks, even with restricte
- successful in reversing a singl
- could not be chained together. T
- are not effective for conducting
 - modern hash s

akeaway

- networks nor recurrent neural
- ed inputs or fuzzy data, were
- le layer of SHA-1. Hence, they
- Therefore, neural network chains
- a preimage attack on a reduced
- such as SHA-1.

modern nash s

								1
Layer Amount	Learning Rate	Round	Epochs	Batch Size	Loss	Train Accuracy	Test Accuracy	Datase
3	0.001	2	11	32	377.5233	0	0	
3	0.001	2	11	64	377.6703	0	0	
7	0.01	2	11	64	377.4963	0	0	
3	0.001	2	11	64	377.5508	0	0	
3	0.001	16	11	64	405.3415	0	0	
3	0.01	16	11	64	405.2192	0	0	
3	0.01	2	11	64	379.9132	0	0	
3	0.01	3	11	64	428.5194	0	0	
3	0.01	3	50	64	428.6604	0	0	
3	0.01	3	11	64	438.9447	0	0	restrict
3	0.01	3	11	64	399.1621	0	0	1 millio
3	0.01	3	11	64	468.2508	0	0	fuzzy d

1	Layer Amount	Learning Rate	Round	Epochs	Batch Size	Loss	Train Accuracy	Test Accuracy	Datase
	3	0.01	3	11	64	428.6908	0	0	
	3	0.01	3	11	64	439.0123	0	0	restricte
	3	0.01	3	11	64	399.1277	0	0	1 millio
	3	0.01	3	11	64	468.1121	0	0	fuzzy d

	Bit Accuracy
	0.49
	0.49
	0.49
	0.49
	0.49
	0.49
	0.49
	0.49
	0.49
l input	0.46
dataset	0.51
a	0.48

Table 1: Accuracies and loss for multilayer feed-forward neural networks with varying hyperparameters and training datasets

	Bit Accuracy
	0.49
input	0.46
	0.51
а	0.48

Table 2: Accuracies and loss forrecurrent neural networks withvarying hyperparameters and trainingdatasets

Proce

Generate Data

Inputs were randomly generated and hashed with a custom implementation of the SHA-1 hash (both normal and fuzzy) in Java that returns internal states for each round.

Single Layer Learning

Feed-forward and recurrent neural networks were programmed in PyTorch and trained to reverse single layers from the data.

edure

