Section III: Results

Learning on a Single Layer

Models were trained on datasets of size 100k, unless otherwise noted. The results for restricted datasets and fuzzy datasets are also presented in the tables below; no significant difference was made. Bitwise accuracy is the average proportion of correct bits outputted. Accuracies and loss are from the final epoch. The round parameter represents which round of SHA-1 is being reversed.

Feed-Forward Neural Networks

Table 1: Accuracies and loss for multilayer feed-forward neural networks with varying hyperparameters and training datasets

Layer Amount	Learning Rate	Round	Epochs	Batch Size	Loss	Train Accuracy	Test Accuracy	Dataset	Bit Accuracy
3	0.001	2	11	32	377.5233	0	0		0.49
3	0.001	2	11	64	377.6703	0	0		0.49
7	0.01	2	11	64	377.4963	0	0		0.49
3	0.001	2	11	64	377.5508	0	0		0.49
3	0.001	16	11	64	405.3415	0	0		0.49
3	0.01	16	11	64	405.2192	0	0		0.49
3	0.01	2	11	64	379.9132	0	0		0.49
3	0.01	3	11	64	428.5194	0	0		0.49
3	0.01	3	50	64	428.6604	0	0		0.49
3	0.01	3	11	64	438.9447	0	0	restricted input	0.46
3	0.01	3	11	64	399.1621	0	0	1 million dataset	0.51
3	0.01	3	11	64	468.2508	0	0	fuzzy data	0.48

As seen in Table 1, simple feed-forward neural networks with no keyspace restrictions generally achieved an accuracy of 0, with very high loss that did not decrease over epochs. Feed-forward neural networks on the same dataset with a keyspace restricted to alphanumeric ASCII characters also achieved an accuracy of 0.

Recurrent Neural Networks

Table 2: Accuracies and loss for recurrent neural networks with varying hyperparameters and training datasets

Layer Amount	Learning Rate	Round	Epochs	Batch Size	Loss	Train Accuracy	Test Accuracy	Dataset	Bit Accuracy
3	0.01	3	11	64	428.6908	0	0		0.49
3	0.01	3	11	64	439.0123	0	0	restricted input	0.46
3	0.01	3	11	64	399.1277	0	0	1 million	0.51
3	0.01	3	11	64	468.1121	0	0	fuzzy data	0.48

As shown in Table 2, recurrent neural networks, regardless of keyspace restrictions, achieved an accuracy of 0. Results were incredibly similar to feed-forward networks, including the decrease in bitwise accuracy with keyspace restrictions. Loss similarly did not decrease at all over epochs.

Chained Models

Due to the dismal accuracies of the single-layer models, they were unable to be chained.