
Project Notes:
Project Title: Using Neural Network Chains to Launch a Preimage Attack on Reduced-Round SHA-1

Name: Erica Dong

Note Well: There are NO SHORT-cuts to reading journal articles and taking notes from them. Comprehension is paramount. You will most likely

need to read it several times, so set aside enough time in your schedule.

Contents:

Knowledge Gaps: 0

Literature Search Parameters: 1

Tags: 2
Article #1 Notes: Title 3
Article #1 Notes: Unmasking Nationality Bias: A Study of Human Perception of Nationalities in
AI-Generated Articles 4
Article #2 Notes: THE ACCURACY COMPARISON AMONG WORD2VEC, GLOVE, AND
FASTTEXT TOWARDS CONVOLUTION NEURAL NETWORK (CNN) TEXT CLASSIFICATION
6
Article #3 Notes: Distinguishing Human-Written and ChatGPT-Generated Text Using
Machine Learning 8
Article #4 Notes: Applications of machine learning in cryptography: a survey [sic] 10
Article #5 Notes: Can you make AI fairer than a judge? Play our courtroom algorithm
game (from the summer) 12
Article #6 Notes: Can a Machine Learn Morality? (from the summer) 14
Article #7 Notes: Judging facts, judging norms: Training machine learning models to
judge humans requires a modified approach to labeling data (from the summer) 16
Article #8 Notes: Classification of Malicious Web Code by Machine Learning 21
Article #9 Notes: Using fuzzy bits and neural networks to partially invert few rounds of
some cryptographic hash functions 23
Article #10 Notes: Preimage Attacks Against Lightweight Scheme Xoodyak Based on
Deep Learning 25
Article #11 Notes: Investigating the Avalanche Effect of Various Cryptographically Secure
Hash Functions and Hash-Based Applications 28
Article #12 Notes: MACHINE LEARNING BASED CRYPTANALYSIS 31
Article #13 Notes: Neuro-Cryptanalysis of DES and Triple-DES 34
Article #14 Notes: New Preimage Attacks Against Reduced SHA-1 36
Article #15 Notes: Cryptanalysis method and system 40
Article #16 Notes: Improving Attacks on Round-Reduced Speck32/64 Using Deep
Learning 45
Article #17 Notes: Double-hashing operation mode for encryption 49



Dong 1

Article #18 Notes: Learning the Enigma with Recurrent Neural Networks 52
Article #19 Notes: Cryptography and machine learning 57
Article #20 Notes: A Deeper Look at Machine Learning-Based Cryptanalysis 60
Article #21 Notes: Does machine learning need fuzzy logic? 63
Article #22 Notes: Deep Learning-Based Cryptanalysis of Lightweight Block Ciphers 66
Article #23 Notes: Applications of SAT Solvers in Cryptanalysis: Finding Weak Keys and
Preimages 71

Knowledge Gaps:
This list provides a brief overview of the major knowledge gaps for this project, how they were resolved

and where to find the information.

Knowledge Gap Resolved By Information is located Date resolved

Race/nationality bias in
AI

Reading various general
articles and papers

Article #1 and #5 10/31

How machine learning
is used in cryptography
and cryptanalysis
currently

Reading a survey paper,
skimming over different
paper headings

Article #4 9/4

Areas of
opportunity/further
research in machine
learning preimage
attacks

Reading papers
conducting attacks and
identifying gaps

Article #4, #9, #10 9/24

Literature Search Parameters:
These searches were performed between (Start Date of reading) and XX/XX/2019.

List of keywords and databases used during this project.

Database/search engine Keywords Summary of search

IEEE Xplore ChatGPT, detection Several articles on using
ChatGPT for textual detection,
some articles on detecting



Dong 2

ChatGPT-generated text

ACM Digital Library Cryptanalysis, machine learning Relevant articles came up first
(applications of machine
learning in cryptanalysis)
followed by semi-related articles
like machine learning in
cryptography or attacks against
machine learning models

Google Scholar Avalanche effect, SHA1,
cryptography

One relevant article evaluating
the avalanche effect, several
related articles on various
hashes and the avalanche effect
in them

Tags:

Tag Name

#cs #ai

#bias #nlp

#cybersecurity #cryptanalysis

#judging #fuzzbits

#preimage-attack #sha-1

#introduction #related-work

#methods #conclusion



Dong 3

Article #1 Notes: Title
Article notes should be on separate sheets

KEEP THIS BLANK AND USE AS A TEMPLATE

Source Title

Source citation (APA Format)

Original URL

Source type

Keywords

#Tags

Summary of key points + notes
(include methodology)

Research Question/Problem/
Need

Important Figures

VOCAB: (w/definition)

Cited references to follow up on

Follow up Questions



Dong 4

Article #1 Notes: Unmasking Nationality Bias: A Study of

Human Perception of Nationalities in AI-Generated

Articles
Article notes should be on separate sheets

Source Title Unmasking Nationality Bias: A Study of Human Perception of Nationalities in
AI-Generated Articles

Source citation (APA Format) Venkit, P. N., Gautam, S., Panchanadikar, R., Huang, T. H., & Wilson, S. (2023).

Unmasking nationality bias: A study of human perception of nationalities

in AI-generated articles. arXiv preprint arXiv:2308.04346.

Original URL https://arxiv.org/pdf/2308.04346.pdf

Source type Paper preprint

Keywords Natural Language Processing, Ethics in AI, Nationality Bias, HCI

#Tags #cs, #ai, #nlp, #bias

Summary of key points + notes
(include methodology)

NLP models are increasingly prevalent in a wide variety of fields but perpetuate
stereotypes on aspects such as nationality due to an inherently biased training
dataset that misrepresents minority populations. The researchers gathered
participants to annotate both GPT- and human-written articles about various
countries on negative sentiment and toxicity and also conducted qualitative
interviews of the participants after they had read the articles. The researchers
found that overall some countries were much more negatively presented in
AI-generated text, as opposed to around equal representation in human-written
articles, indicating possible nationality bias in the model.

Research Question/Problem/
Need

Is there nationality bias in natural language processing (NLP) models?

https://arxiv.org/pdf/2308.04346.pdf


Dong 5

Important Figures

Figure 2: Worldmap of the sentiment scored by VADER [32] of 100 text [sic]
generated by GPT-2 for each country with the prompt ‘The <Nationality> people’.

Figure 3: Overall Perception (OveP) score of all articles grouped by the sentiment
group of the countries.

VOCAB: (w/definition) Natural language processing - area of machine learning focused on recognizing,
processing, and generating natural language

Cited references to follow up on Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021, March). On

the dangers of stochastic parrots: Can language models be too big?🦜. In

Proceedings of the 2021 ACM conference on fairness, accountability, and

transparency (pp. 610-623).

Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to

computer programmer as woman is to homemaker? debiasing word

embeddings. Advances in neural information processing systems, 29.

Follow up Questions If NLP models are biased due to their dataset, how can an unbiased dataset be
created?
How can the negative effects of AI bias be mitigated?
Would an NLP toxicity analyzer rate the documents differently than humans?



Dong 6

Article #2 Notes: THE ACCURACY COMPARISON AMONG

WORD2VEC, GLOVE, AND FASTTEXT TOWARDS

CONVOLUTION NEURAL NETWORK (CNN) TEXT

CLASSIFICATION
Article notes should be on separate sheets

Source Title THE ACCURACY COMPARISON AMONG WORD2VEC, GLOVE, AND FASTTEXT
TOWARDS CONVOLUTION NEURAL NETWORK (CNN) TEXT CLASSIFICATION

Source citation (APA Format) Dharma, E. M., Gaol, F. L., Warnars, H. L. H. S., & Soewito, B. (2022). The accuracy

comparison among Word2Vec, GloVe, and FastText towards convolution

neural network (CNN) text classification. J Theor Appl Inf Technol, 100(2),

31.

Original URL http://www.jatit.org/volumes/Vol100No2/5Vol100No2.pdf

Source type Journal paper

Keywords Word2Vec, Glove, Fasttext, Word Embedding, Convolution Neural Network, Text
Classification

#Tags #cs, #ai, #nlp

Summary of key points + notes
(include methodology)

Word embedding, or encoding words’ semantic and syntactic meanings in vectors,

converts unstructured text to meaningful data and is a critical step in NLP models,

with three common algorithms being Word2Vec, GloVe, and FastText. The

researchers built one-dimensional CNNs with each of the three algorithms to

categorize news articles, finding approximately equal rates of accuracy, indicating

that all three methods are competitive and that effectiveness depends on the

dataset and domain of the problem.

Research Question/Problem/
Need

Does the method of word embedding used affect the accuracy of convolutional

neural networks (CNN) in text classification?

http://www.jatit.org/volumes/Vol100No2/5Vol100No2.pdf


Dong 7

Important Figures

Figure 7: Graph accuracy training and testing data in dataset 20 newsgroups, with
Word Embedding: Word2Vec(a), Glove(b) and FastText(c)

VOCAB: (w/definition) Convolutional neural network - type of neural network that learns to recognize
features by training filters to convolve over the input

Cited references to follow up on Eklund, M. (2018). Comparing feature extraction methods and effects of

pre-processing methods for multi-label classification of textual data.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural

network for modelling sentences. arXiv preprint arXiv:1404.2188.

Follow up Questions Do certain word embedding methods tend to encode more semantically or

syntactically?

How do non-word-embedding feature extraction methods compare in terms of

accuracy?

Are there significant differences in method speed that would affect overall model

performance?



Dong 8

Article #3 Notes: Distinguishing Human-Written and

ChatGPT-Generated Text Using Machine Learning
Article notes should be on separate sheets

Source Title Distinguishing Human-Written and ChatGPT-Generated Text Using Machine
Learning

Source citation (APA Format) Alamleh, H., AlQahtani, A. A. S., & ElSaid, A. (2023). Distinguishing human-written

and ChatGPT-generated text using machine learning. 2023 Systems and

Information Engineering Design Symposium (SIEDS), 154–158.

https://doi.org/10.1109/SIEDS58326.2023.10137767

Original URL https://ieeexplore.ieee.org/document/10137767

Source type Journal paper

Keywords TextOriginClassifier, ChatGPT, human-written text, AI-generated text, machine
learning, academic integrity, content detection, AI, NLP, TF-IDF

#Tags #cs, #ai, #nlp

Summary of key points + notes
(include methodology)

The growing sophistication of large language models such as ChatGPT has made it
increasingly difficult to distinguish between human- and AI-produced text, putting
academic integrity at risk and leading many to turn toward machine learning as a
detection method. The researchers used TF-IDF feature extraction to train and
compare 11 different machine learning algorithms on accuracy and efficiency in
distinguishing human- and AI-written text on a dataset of CS student essays and
code. They found that the Random Forest model worked best overall with an
accuracy of 92.50%, and that in general classical machine learning models
performed better than deep learning (although this may be due to the smaller
dataset).

Research Question/Problem/
Need

Which machine learning algorithm is most effective at distinguishing between
human- and AI-written text?

Important Figures N/A (only tables)

VOCAB: (w/definition) TF-IDF - feature extraction technique that uses term frequency and inverse
document frequency that captures the importance of a term in a document
relative to the entire dataset

https://doi.org/10.1109/SIEDS58326.2023.10137767
https://doi.org/10.1109/SIEDS58326.2023.10137767
https://ieeexplore.ieee.org/document/10137767


Dong 9

Cited references to follow up on Y. Dou, M. Forbes, R. Koncel-Kedziorski, N. A. Smith, and Y. Choi, “Is GPT-3 text

indistinguishable from human text? Scarecrow: A framework for

scrutinizing machine text,” arXiv preprint arXiv:2107.01294, 2021.

Follow up Questions Would deep learning models perform better if the dataset were larger?
Would accuracy be different if the essays weren’t solely in the area of computer
science, which is generally more objective?
How would adding a syntactic aspect to feature extraction affect accuracy?
Are these models effective for GPT-text with student edits or paraphrasing?



Dong 10

Article #4 Notes: Applications of machine learning in

cryptography: a survey [sic]
Article notes should be on separate sheets

Source Title Applications of machine learning in cryptography: a survey

Source citation (APA Format) Alani, M. M. (2019). Applications of machine learning in cryptography: A survey.

Proceedings of the 3rd International Conference on Cryptography, Security

and Privacy, 23–27. https://doi.org/10.1145/3309074.3309092

Original URL https://dl-acm-org.ezpv7-web-p-u01.wpi.edu/doi/10.1145/3309074.3309092

Source type Journal paper

Keywords Cryptography, cryptanalysis, machine learning

#Tags #cs, #ai, #cybersecurity, #cryptanalysis

Summary of key points + notes
(include methodology)

This paper surveys machine learning techniques and research applied to
cryptography and data security overall, with the main areas being cryptosystems
based on machine learning, classification of encrypted traffic, cryptanalysis of
encryption algorithms, and attacks based on machine learning. For example, in
cryptography some have proposed using neural networks to communicate
decryption keys or cipher text or using machine learning to classify encrypted data,
while more cryptanalysis-focused uses include applications in side-channel attacks
and known-plaintext attacks. The paper also discusses security issues with
machine learning systems themselves, such as polluting their data or exploiting
them to gain meaningful information about their training sets, as well as future
directions for machine learning in cryptography.

Research Question/Problem/
Need

How can machine learning be applied in cryptography?

Important Figures N/A

VOCAB: (w/definition) Cryptosystem - a set of algorithms used to encode and decode messages securely
Steganography - concealing information within another message or physical object
Side-channel attack - attack that uses extra information from the way an algorithm
is implemented rather than the actual algorithm, such as power usage or data
movement
Known-plaintext attack - attack that uses known ciphertext and plaintext pairs to

https://doi.org/10.1145/3309074.3309092
https://dl-acm-org.ezpv7-web-p-u01.wpi.edu/doi/10.1145/3309074.3309092


Dong 11

deduce secret information such as keys or other plaintext

Cited references to follow up on Komiya, R., Paik, I., & Hisada, M. (2011). Classification of malicious web code by

machine learning. 2011 3rd International Conference on Awareness

Science and Technology (iCAST), 406-411.

M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing android encrypted

network traffic to identify user actions,” IEEE Transactions on Information

Forensics and Security, vol. 11, no. 1, pp. 114–125, 2016.

M. M. Alani, “Neuro-cryptanalysis of des and triple-des,” in International

Conference on Neural Information Processing, pp. 637–646, Springer,

2012.

Follow up Questions Can machine learning augment the efficiency of existing cryptanalysis techniques?
Can machine learning be used to extract decryption keys from ciphertext?
Can AI be used to design cryptosystems?
How can AI architecture be designed to prevent leaking training set information?
How can encryption schemes be designed to prevent pattern analysis with AI?



Dong 12

Article #5 Notes: Can you make AI fairer than a judge?

Play our courtroom algorithm game (from the summer)

Article notes should be on separate sheets

Source Title Can you make AI fairer than a judge? Play our courtroom algorithm game

Source citation (APA Format) Hao, K., & Stray, J. (2019, October 17). Can you make AI fairer than a judge? Play

our courtroom algorithm game. MIT Technology Review.

https://www.technologyreview.com/2019/10/17/75285/ai-fairer-than-jud

ge-criminal-risk-assessment-algorithm/

Original URL https://www.technologyreview.com/2019/10/17/75285/ai-fairer-than-judge-crimi
nal-risk-assessment-algorithm/

Source type General Article

Keywords AI, judging, bias, COMPAS, fairness

#Tags #cs, #ai, #bias

Summary of key points + notes
(include methodology)

AI is increasingly used to judge people, from predicting risk to recommending
hires. Proponents say it can help eliminate implicit bias, but this may not be true.
For example, the risk-assessment AI COMPAS tends to give higher risk scores to
black people as opposed to white, leading to a higher proportion of black people
being needlessly jailed. It is difficult to balance this out without conflicting with
other definitions of fairness; for example, if the threshold to release is different for
different races, even if the proportion of needless jailing is the same, this seems to
hold black and white people to different standards on the same scale. This is
because of the inherent bias in the data — police are more likely to rearrest black
people due to racial biases. Some solutions have been proposed, such as the
Algorithmic Accountability Act, which requires companies to audit their AI systems
for bias in order to improve transparency and bring in public accountability.
However, there are still questions remaining about whether AI will lessen or
exacerbate inequities, how exactly to define fairness, and whether AI should be
used for these applications at all. This pertains to my idea of developing a fair
judgment framework for AI with adjustable parameters, such as political leaning,
because it identifies a major weakness of the field, bias, and explains where it is
coming from and the attempts to rectify it.

Research Question/Problem/ Are AI judging algorithms fair?

https://www.technologyreview.com/2019/10/17/75285/ai-fairer-than-judge-criminal-risk-assessment-algorithm/
https://www.technologyreview.com/2019/10/17/75285/ai-fairer-than-judge-criminal-risk-assessment-algorithm/


Dong 13

Need

Important Figures N/A

VOCAB: (w/definition) COMPAS - AI judging algorithm used to advise judges in the courtroom by
predicting the risk of rearrest

Cited references to follow up on N/A

Follow up Questions If the bias in AI comes from data, how can we curate unbiased data?
How can we create a bias-resistant training architecture?
What are the current impacts of AI bias on rulings?



Dong 14

Article #6 Notes: Can a Machine Learn Morality? (from the

summer)

Article notes should be on separate sheets

Source Title Can a Machine Learn Morality?

Source citation (APA Format) Metz, C. (2021, November 19). Can a machine learn morality?. The New York

Times.

https://www.nytimes.com/2021/11/19/technology/can-a-machine-learn-

morality.html

Original URL https://www.nytimes.com/2021/11/19/technology/can-a-machine-learn-morality.
html

Source type General Article

Keywords AI, judging, machine morals, Delphi

#Tags #cs, #ai,, #judging

Summary of key points + notes
(include methodology)

Despite efforts to the contrary, modern AI systems lack a solid ethical framework
and often reflect the biases of the data used to train them. In an attempt to
address this, researchers at the Allen Institute for AI gathered together millions of
everyday scenarios, asked digital workers to judge them as right or wrong, and
then used it to train a neural network. Named Delphi, although “intelligent” in a
limited number of situations, it has extensive limitations and sometimes gives
illogical or inconsistent answers. Some argue that the subjective nature of morality
means it is imprudent to try to embed it in a machine, while others continue to
raise concerns about the biases inherent to the system. This pertains to my idea of
developing a fair judgment framework for AI because it goes over one current
attempt to embed moral judgment in an AI and identifies its current issues, giving
me ideas for how I can start and where I can improve.

Research Question/Problem/
Need

Can AI answer ethical questions?

Important Figures N/A

VOCAB: (w/definition) N/A (general article)

Cited references to follow up on N/A

https://www.nytimes.com/2021/11/19/technology/can-a-machine-learn-morality.html
https://www.nytimes.com/2021/11/19/technology/can-a-machine-learn-morality.html


Dong 15

Follow up Questions Is there a way to algorithmically determine the “accuracy” of Delphi?
Can we make an ethical algorithm that explains itself?
Is it more dangerous to not try to align AI ethics or have misaligned ones?



Dong 16

Article #7 Notes: Judging facts, judging norms: Training

machine learning models to judge humans requires a

modified approach to labeling data (from the summer)

Article notes should be on separate sheets

Source Title Judging facts, judging norms: Training machine learning models to judge humans
requires a modified approach to labeling data

Source citation (APA Format) Balagopalan, A., Madras, D., Yang, D. H., Hadfield-Menell, D., Hadfield, G. K., &

Ghassemi, M. (2023). Judging facts, judging norms: Training machine

learning models to judge humans requires a modified approach to labeling

data. Science Advances, 9(19). https://doi.org/10.1126/sciadv.abq0701

Original URL https://www.science.org/doi/pdf/10.1126/sciadv.abq0701

Source type Journal Article

Keywords AI, judging, datasets

#Tags #cs, #ai, #judging

Summary of key points + notes
(include methodology)

Machine learning is increasingly used to make normative judgments in areas such
as employment, credit risk assessment, and criminal justice, where normative
judgments are decisions based on human rules and norms. Factual judgments and
normative judgments are often used in conjunction, with disputes over normative
judgments being resolved by, for example, a jury. One approach is to train the
model to classify the factual features (such as dehumanizing speech) of a
normative rule (such as no hate speech), and then apply these classifications to
recognize violations. This study used four settings—images of clothing, meals, and
pets, and text from discussion forums—to demonstrate that this approach actually
fails to replicate real human judgments. For each, they constructed simple codes,
e.g. a dress code, with three factual features. They then had participants label
each object in each setting, or dataset, by either description—labeling the
presence of relevant factual features of the code—or normative
judgment—labeling whether the code was violated, and then identifying the
features motivating their decision. Looking at the percentage of data points for
each object that resulted in violation, they found that the judgments of the
descriptive group were significantly more likely to label it as a violation than the
corresponding judgments of the normative group. Even with the addition of more

https://doi.org/10.1126/sciadv.abq0701
https://www.science.org/doi/pdf/10.1126/sciadv.abq0701


Dong 17

context to the descriptive group, there were similar results. They also found that
objects with high contentiousness (involving more subjective decisions, such as a
medium-length skirt being judged for shortness) were more likely to have different
judgments between groups. Overall, the researchers found that people are less
likely to assert that a norm has been violated than they are to assert that its
related factual features are present. The researchers also demonstrated the impact
of this difference by training models on data labeled with either factual
descriptions or direct normative judgments. They found that models trained on
the former performed poorer, and had a higher false-positive rate. The researchers
then showed that this effect on performance is as or greater than the impacts of
other, more-emphasized AI design choices (such as dataset size), underscored its
significance in automated decision-making, and highlighted the importance of rich
data labeling in constructing effective AI. In their conclusion, they discuss the
potential consequences of an overly harsh AI judge, suggest that improving
systemic bias in judging programs such as COMPAS should focus on improving data
labels, and explain several robustness checks such as framing (compliance vs
violation). Finally, they discuss some of the psychological and ethical questions
raised, emphasize transparency in ML development, and encourage caution in
using automated decision-making AI. This article pertains to my question of
whether an AI can make fair and accurate judgments because it demonstrates a
deep flaw in current automated decision-making systems, gives insight into how
humans make judgments, and suggests critical areas for improvement.

Research Question/Problem/
Need

Does the way data is labeled affect judging AI?



Dong 18

Important Figures

Fig. 2. We contrast rule violation judgment labels collected under a normative
condition with those constructed using factual feature labels collected under a
descriptive condition.



Dong 19

Fig. 3. Judgments generated with descriptive labels are significantly different from
those generated by collecting normative judgments.

Fig. 4. Observed normative judgments deviate from what we would expect if the
normative and descriptive conditions were identical.



Dong 20

Fig. 5. Models trained on descriptive labels result in statistically significantly
different predictions from models trained on normative labels.

VOCAB: (w/definition) Normative judgements - judgements made based on social norms rather than
hard-coded rules

Cited references to follow up on A. Chouldechova, A. Roth, A snapshot of the frontiers of fairness in machine

learning. Commun. ACM 63, 82–89 (2020).

G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, L. Qu, Making deep neural

networks robust to label noise: A loss correction approach, in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR, 2017), pp.

1944–1952.

Rottger, P., Vidgen, B., Hovy, D., & Pierrehumbert, J. (2022). Two contrasting data

annotation paradigms for subjective NLP tasks. Proceedings of the 2022

Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 175–190.

https://doi.org/10.18653/v1/2022.naacl-main.13

Follow up Questions What effect does using normative versus descriptive judgements have on AI bias?
(are normative judgements more likely to be biased?)
In what other ways can data format be altered to improve AI?

https://doi.org/10.18653/v1/2022.naacl-main.13
https://doi.org/10.18653/v1/2022.naacl-main.13


Dong 21

Article #8 Notes: Classification of Malicious Web Code by

Machine Learning
Article notes should be on separate sheets

Source Title Classification of Malicious Web Code by Machine Learning

Source citation (APA Format) Komiya, R., Paik, I., & Hisada, M. (2011). Classification of malicious web code by

machine learning. 2011 3rd International Conference on Awareness

Science and Technology (iCAST), 406–411.

https://doi.org/10.1109/ICAwST.2011.6163109

Original URL https://ieeexplore.ieee.org/document/6163109

Source type Journal article

Keywords Security, Web Application, Machine Learning

#Tags #cs, #ai, #cybersecurity

Summary of key points + notes
(include methodology)

Input sections of websites are often vulnerable to malicious input, and although
malicious-code identifiers exist, they rely on fixed patterns and aren’t adaptable. In
order to address this, the researchers created a machine learning model that first
learns what criterion to classify input on, then generates feature vectors and
classifies code based on these criteria. They implemented and evaluated classifiers
for both SQLIAs and XSS attacks, three machine learning models (SVM,
Naive-Bayes, k-Nearest Neighbor), and some kernel functions, finding that SVMs
with Gaussian kernel has the highest accuracy of 99.16% for SQLIAs and 98.95% for
XSS.

Research Question/Problem/
Need

Can machine learning be used to identify malicious web code?

https://doi.org/10.1109/ICAwST.2011.6163109
https://doi.org/10.1109/ICAwST.2011.6163109
https://ieeexplore.ieee.org/document/6163109


Dong 22

Important Figures

Figure 1. The flows of two classification processes: the learning process (a) and the
classification process (b)
(don’t know why quality is so low)

VOCAB: (w/definition) SQLIA - SQL injection attack, used to access sensitive/protected data in the
database
XSS attack - cross-site scripting attack, runs unauthorized scripts under the guise of
a safe website
Kernel function - window function that maps data from one space to another
Support vector machine (SVM) - supervised machine learning model that classifies
based on side of a gap between data classes in a high-dimensional plane, capable
of both linear and nonlinear classification

Cited references to follow up on Belur V Dasarathy, "Nearest neighbor (NN) norms: NN pattern classification

techniques," IEEE Computer Society Press, 1991.

Follow up Questions How do these models perform with code they haven’t seen before?



Dong 23

Article #9 Notes: Using fuzzy bits and neural networks to

partially invert few rounds of some cryptographic hash

functions
Article notes should be on separate sheets

Source Title Using fuzzy bits and neural networks to partially invert few rounds of some
cryptographic hash functions

Source citation (APA Format) Goncharov, S. V. (2019). Using fuzzy bits and neural networks to partially invert few

rounds of some cryptographic hash functions. arXiv.

https://doi.org/10.48550/ARXIV.1901.02438

Original URL https://arxiv.org/pdf/1901.02438.pdf

Source type arXiv preprint

Keywords Bit, neural network, hash, fuzzy, CHF, round, inverse, preimage, training,
approximation

#Tags #cs, #ai, #cryptanalysis, #sha1, #fuzzbits, #preimage-attack, #related-work,
#methods

Summary of key points + notes
(include methodology)

Artificial neural networks are usually not useful for cryptographic hash inversion
due to their inputs and outputs being discrete, which prevents gradient descent
and backpropagation from working properly. To circumvent this problem, the
researcher used “fuzzy” bits, which range from 0 to 1 continuously, defined binary
operations in terms of them, implemented several common hashes “fuzzily,” and
used this to train a simple fully-connected perceptron to reverse reduced-round
hashes. This is effective with only severely-reduced round hashes, and adding
more hidden layers did not seem to help.

Research Question/Problem/
Need

How can artificial neural networks be used to conduct preimage attacks?

Important Figures N/A (no figures)

VOCAB: (w/definition) Preimage attack - finding an input that results in the same value given a set output

Cited references to follow up on Alani, M. M. (2012). Neuro-Cryptanalysis of DES and Triple-DES. In T. Huang, Z.

https://doi.org/10.48550/ARXIV.1901.02438
https://arxiv.org/pdf/1901.02438.pdf


Dong 24

Zeng, C. Li, & C. S. Leung (Eds.), Neural Information Processing (Vol. 7667,

pp. 637–646). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-34500-5_75

Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., & Wang, L. (2009). Preimages for

Step-Reduced SHA-2. In M. Matsui (Ed.), Advances in Cryptology –

ASIACRYPT 2009 (Vol. 5912, pp. 578–597). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-10366-7_34

De Canniere, C., & Rechberger, C. (2008). Preimages for Reduced SHA-0 and SHA-1.

CRYPTO, 5157(11), 179–202. https://doi:10.1007/978-3-540-85174-5_11

Follow up Questions Could these neural networks be more effective if they also trained on information
from each round?
Could this concept be applied to a single hash inverter? How would that be
trained?
Could tweaks to the binary extension operations improve efficiency? Is there a
better way to make it continuous?

https://doi.org/10.1007/978-3-642-34500-5_75
https://doi.org/10.1007/978-3-642-10366-7_34
https://doi.org/10.1007/978-3-642-10366-7_34


Dong 25

Article #10 Notes: Preimage Attacks Against Lightweight

Scheme Xoodyak Based on Deep Learning
Article notes should be on separate sheets

Source Title Preimage Attacks Against Lightweight Scheme Xoodyak Based on Deep Learning

Source citation (APA Format) Liu, G., Lu, J., Li, H., Tang, P., & Qiu, W. (2021). Preimage attacks against lightweight

scheme Xoodyak based on deep learning. In K. Arai (Ed.), Advances in

Information and Communication (Vol. 1364, pp. 637–648). Springer

International Publishing. https://doi.org/10.1007/978-3-030-73103-8_45

Original URL https://link.springer.com/chapter/10.1007/978-3-030-73103-8_45

Source type Journal article

Keywords Deep learning, preimage attack, cryptanalysis, Xoodyak

#Tags #cs, #ai, #cryptanalysis, #preimage-attack, #related-work

Summary of key points + notes
(include methodology)

With the emergence of the Internet of Things and the subsequent need for
security in systems with limited computing power, it is important to examine
lightweight cryptographic hashes. The researchers constructed deep neural
networks to launch preimage attacks against weaker attack models of the
lightweight hash Xoodyak, but were ultimately unsuccessful, with the networks
only being effective when the hash was reduced to a single round. Even then, this
success allowed for outputs being incorrect by 25%, with even lower accuracy
when looking for truly on point results.

Research Question/Problem/
Need

Can deep neural networks be used to conduct preimage attacks on lightweight
cryptographic hash functions?

Important Figures

https://doi.org/10.1007/978-3-030-73103-8_45
https://link.springer.com/chapter/10.1007/978-3-030-73103-8_45


Dong 26

Fig. 2. Two attack models of Xoodyak hash mode, each with a squeezing rate of
384-bit (or 128-bit) and a hash length of 384-bit (or 128-bit)

Fig. 3. The attack model 128-(256,32)

Fig. 5. The number of correctly predicted messages on the test dataset

VOCAB: (w/definition) Attack model - modified version of a system/function to test cryptanalytic attacks
against

Cited references to follow up on Alallayah, K. M., El-Wahed, W. F. A., Amin, M. & Alhamami, A. H. (2010). Attack of

Against Simplified Data Encryption Standard Cipher System Using Neural

Networks. Journal of Computer Science, 6(1), 29-35.

https://doi.org/10.3844/jcssp.2010.29.35

So, J. (2020). Deep Learning-Based Cryptanalysis of Lightweight Block Ciphers.

https://doi.org/10.3844/jcssp.2010.29.35


Dong 27

Security and Communication Networks, 2020, 1–11.

https://doi.org/10.1155/2020/3701067

Follow up Questions Would the attack be more effective if the inputs and outputs were continuous
rather than discrete? (not sure how the researchers built the DNNs)
Would the attack be more effective if the NN was specifically tailored to the
structure of the Xoodyak hash, such as a two-stage NN to reverse squeezing and
then absorbing?

https://doi.org/10.1155/2020/3701067
https://doi.org/10.1155/2020/3701067


Dong 28

Article #11 Notes: Investigating the Avalanche Effect of

Various Cryptographically Secure Hash Functions and

Hash-Based Applications
Article notes should be on separate sheets

Source Title Investigating the Avalanche Effect of Various Cryptographically Secure Hash
Functions and Hash-Based Applications

Source citation (APA Format) Upadhyay, D., Gaikwad, N., Zaman, M., & Sampalli, S. (2022). Investigating the

avalanche effect of various cryptographically secure hash functions and

hash-based applications. IEEE Access, 10, 112472–112486.

https://doi.org/10.1109/ACCESS.2022.3215778

Original URL https://ieeexplore.ieee.org/abstract/document/9923931

Source type Journal article

Keywords Avalanche effect, cryptographically secure hash functions, SAC (Strict Avalanche
Criterion), BIC (Bit Independence Criterion), message authentication code, collision
attack, preimage resistance attack, hash-based message authentication code,
public key cryptography standards

#Tags #cs, #ai, #cryptanalysis, #introduction

Summary of key points + notes
(include methodology)

The avalanche effect is critical to the strength of cryptographic hashes, which are
key in digital protection and authentication. This paper provides a comprehensive
evaluation of sixteen well-known hashes, including SHA variations, and two
cryptographic applications, Hash-based Message Authentication Code and Public
Key Cryptography Standards, based on the Strict Avalanche and Bit Independence
Criteria (SAC and BIC). The researchers first build a simulation circuit to test these
hashes, finding that on average half of all input strings (out of 5011) pass both
criteria, with similar results for all functions. They also used intermediate values of
testing, such as average Hamming distance, or the number of bits flipped in the
output, and Multi-Criteria Decision Metrics to rank the hash functions, with
Blake-512 taking first for SAC and RIPEMD-160 for BIC. Finally, the researchers ran
fifteen statistical tests provided by the NIST toolkit to evaluate randomness of the
functions, finding that all passed most of the tests.

Research Question/Problem/ How strong are different cryptographic hashes and cryptographic applications

https://doi.org/10.1109/ACCESS.2022.3215778
https://doi.org/10.1109/ACCESS.2022.3215778
https://ieeexplore.ieee.org/abstract/document/9923931


Dong 29

Need based on the avalanche effect?

Important Figures

FIGURE 1. Block Diagram of the simulation circuit to measure the Avalanche effect
of various functions.

FIGURE 3. Comparative analysis of various cryptographically secure hash function
based on percentage of strings passed during Avalanche test.



Dong 30

VOCAB: (w/definition) Avalanche effect - at least 50% of bits in the output must be flipped after a minor
change in the input (in cryptographic hashes)
Strict Avalanche Criterion - when single bit is flipped in the input, each of the
output bits have a 50% chance of changing
Bit Independence Criterion - when any single bit is flipped in the input, all output
bits should change independently
Multi-criteria decision-making - technique to rank options based on several criteria

Cited references to follow up on Chi, L., & Zhu, X. (2017). Hashing Techniques. In ACM Computing Surveys (Vol. 50,

Issue 1, pp. 1–36). Association for Computing Machinery (ACM).

https://doi.org/10.1145/3047307

Follow up Questions Why did some simpler hashes perform better than the advanced ones?
What factors affect the strength of the avalanche effect in a hash, and how can
they be optimized?
In what ways do round length and round complexity affect avalanche effect
strength?
Can the avalanche effect be produced without rounds?

https://doi.org/10.1145/3047307


Dong 31

Article #12 Notes: MACHINE LEARNING BASED

CRYPTANALYSIS
Article notes should be on separate sheets

Source Title MACHINE LEARNING BASED CRYPTANALYSIS

Source citation (APA Format) Ganesan, D., & Clifton, D. M. (2023). MACHINE LEARNING BASED CRYPTANALYSIS

(U.S. Patent Application No. 17/448,551). U.S. Patent and Trademark

Office.

https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/2023

0091540

Original URL https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/20230091540

Source type Patent application publication

Keywords N/A

#Tags #cs, #ai, #cryptanalysis, #related-work

Summary of key points + notes
(include methodology)

Cryptanalysis on cryptographic algorithms is traditionally conducted manually, but
this process may be able to be automated through program synthesis, a subfield of
machine learning. The inventors generated numerous input-output pairs of
different public-key cryptosystems such as RSA and Rabin, encoded the problem in
the syntax used by the machine learning model, and trained a program synthesizer
model (specifically, with the CVC4 engine) on the data to conduct either an oracle
attack or a preimage attack. The inventors then checked whether the learned
program was valid for general cases, not just the training data, and retrained if not.
This method can be used to either fully or partially decrypt ciphertext, based on
the type of cryptosystem and given information. For example, for the
Diffie-Hellman algorithm, the program synthesizer was used to uncover the least
significant bit of the private key. The inventors also performed an oracle attack on
the RSA cryptosystem, where, given the public key and the least significant bit of
the private key, they predicted the most significant bit of the private key. They then
claimed that this could be used to decrypt the entire private key. The inventors
also outlined a server system layout that implements these techniques.

Research Question/Problem/
Need

Can a program synthesizer be used to automate cryptanalysis?

https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/20230091540


Dong 32

Important Figures

Fig. 2

Fig. 3



Dong 33

VOCAB: (w/definition) Program synthesis - area of machine learning that constructs code to satisfy given
specifications
Satisfability modulo theories - the problem of determining whether a
mathematical formula is satisfiable
Oracle - the mathematical version of a data leak, an unintended extra piece of
information given that should be hidden
Oracle attack - an attack on a cryptosystem where plaintext or ciphertext are fed to
an encryptor or decryptor, respectively, and the output is analyzed to deduce
hidden information such as secret keys
Least significant bit - the lowest (rightmost) bit in a binary number, representing
the 1s place

Cited references to follow up on N/A (didn’t cite anything)

Follow up Questions How efficient are program synthesis algorithms at cryptanalysis tasks?
How useful is finding the LSB?
How practical is the described RSA attack? (the patent’s description seemed
dubious)
Can program synthesis be applied to more complex cryptanalysis tasks, given the
current limitations of the field?



Dong 34

Article #13 Notes: Neuro-Cryptanalysis of DES and

Triple-DES
Article notes should be on separate sheets

Source Title Neuro-Cryptanalysis of DES and Triple-DES

Source citation (APA Format) Alani, M. M. (2012). Neuro-cryptanalysis of DES and triple-DES. In T. Huang, Z.

Zeng, C. Li, & C. S. Leung (Eds.), Neural Information Processing (Vol. 7667,

pp. 637–646). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-34500-5_75

Original URL https://link.springer.com/chapter/10.1007/978-3-642-34500-5_75

Source type Conference paper

Keywords Cryptanalysis, des, triple-des, 3des, neural, neuro-cryptanalysis

#Tags #cs, #ai, #cryptanalysis, #preimage-attack, #introduction, #related-work, #methods

Summary of key points + notes
(include methodology)

Both DES and triple-DES have been the target of many attacks, but not yet through
neuro-cryptanalytic means. To address this knowledge gap, the author conducted
a Global Deduction known-plaintext attack using a multi-layer cascade
feedforward neural network trained on ciphertext-plaintext pairs all encrypted
with the same key. This allowed the neural network to predict plaintext based on
ciphertext without knowing the key. He generated 100 different datasets from 100
different keys using a pseudorandom number generator, and trained and validated
a new neural network on each one (calculating error by rounding). Overall, he
found that it took an average of 51 minutes for DES and 72 minutes for triple-DES,
and 211 plaintext-ciphertext pairs and 212 plaintext-ciphertext pairs for triple-DES,
to train a successful neural network, with average outside error being 0.083% for
DES and 0.114% for triple-DES. This is a significant improvement over differential
cryptanalysis and linear cryptanalysis techniques for both ciphers, and this
technique could potentially be expanded to other ciphers and areas of
cryptanalysis.

Note: at the time of the paper’s publishing, triple-DES had not yet been
deprecated

Research Question/Problem/
Need

Can a neural network be trained to conduct a known-plaintext attack on DES and
triple-DES?

https://doi.org/10.1007/978-3-642-34500-5_75
https://doi.org/10.1007/978-3-642-34500-5_75
https://link.springer.com/chapter/10.1007/978-3-642-34500-5_75


Dong 35

Important Figures

Fig. 1. A Schematic Diagram of the Neuro-Cryptanalysis System

VOCAB: (w/definition) Symmetric-key algorithm - cryptographic algorithm that uses the same secret key
for both encryption and decryption
DES - Data Encryption Standard, a symmetric-key encryption algorithm that,
although insecure for modern applications due to its small 56-bit key, is historically
significant and has been widely scrutinized
Triple DES - a cipher that applies DES three times to each block of data using three
different keys (which sum to a total key) using the
Encryption-Decryption-Encryption pattern. It was recently deprecated but is still
significant
Global Deduction - attacker finds an algorithm functionally equivalent to the
original without knowing the secret key
Cascade neural network - neural network that starts simple and adds more
complexity/layers iteratively throughout training
Inside error - model error within dataset
Outside error - model error with new/testing data
Linear cryptanalysis - area of cryptanalysis that aims to find probabilistic linear
relationships between the plaintext, ciphertext, and key

Cited references to follow up on Klimov, A., Mityagin, A., & Shamir, A. (2002). Analysis of Neural Cryptography.

International Conference on the Theory and Application of Cryptology and

Information Security.

Rao, K.V. & Krishna, M. & Babu, D.. (2009). Cryptanalysis of a Feistel type block

cipher by feed forward neural network using right sigmoidal signals.

International Journal of Soft Computing, 4, 131-135.

Follow up Questions Why are the dataset size requirements for DES and triple-DES so close?
Can this technique be applied to more complex ciphers—why hasn’t it been so far?



Dong 36

Article #14 Notes: New Preimage Attacks Against

Reduced SHA-1
Article notes should be on separate sheets

Source Title New Preimage Attacks Against Reduced SHA-1

Source citation (APA Format) Knellwolf, S., & Khovratovich, D. (2012). New preimage attacks against reduced

SHA-1. In R. Safavi-Naini & R. Canetti (Eds.), Advances in Cryptology –

CRYPTO 2012 (Vol. 7417, pp. 367–383). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-32009-5_22

Original URL https://link.springer.com/chapter/10.1007/978-3-642-32009-5_22

Source type Conference paper

Keywords SHA-1, preimage attack, differential meet-in-the-middle

#Tags #cs, #cryptanalysis, #preimage-attack, #sha-1, #introduction

Summary of key points + notes
(include methodology)

- Most work has been focused on collision attacks
- Recent work in preimage attacks using differential cryptanalysis and

meet-in-the-middle attacks
- SHA-1 can be seen as a chain of Davies-Meyer functions, and so a

preimage attack is simply a matter of finding the key
- Split SHA-1 into two functions - the attack tries to find two linear disjoint

search spaces of differentials where there exists related-key differentials,
one for the first forward function and one for the inverse second function

- Search the affine set M XOR D1 XOR D2 and compute two lists with 2^d
evaluations of the forward and inverse function, where d is the size of
each of the search spaces, and compare - a match is a preimage

- The second two conditions “combine” the two differentials to get the
middle

- M is simply the initial state - the preimage is M xor the two differentials
- Complexity of 2n-d times complexity of total hash function
- Can add truncated/probabilistic differentials with a bitmask, but has

impacts of the effectiveness of the attack (increases complexity due to
retesting)

- Truncated output differences reduce computational complexity
and may help highlight patterns/more significant bits

https://doi.org/10.1007/978-3-642-32009-5_22
https://doi.org/10.1007/978-3-642-32009-5_22
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_22


Dong 37

- Splice and cut, bicliques - figure out
- Pseudo-preimages - additional degree of freedom because

“wrong” initialization vector
- Linear message expansion

- Difference spaces can be chosen based on the kernels of the linear
key expansion so that no differences exist in the first and last k
(where k is the key length) rounds, so no advanced techniques are
needed - these can be extended to more rounds with
truncated/probabilistic techniques

- Kernels can be found by linear algebra
- One-block preimages and one-block pseudo-preimages obtained ->

combined with attack method to obtain two-block preimages
- One-block preimages

- Find attack parameters: function separation, two linear spaces,
output differences for each element in each linear space, and
truncation masks of certain Hamming weight

- < 30 steps linear message expansion kernel technique can be used
- Found 1:3 ratio worked well for function separation since diffusion

is weaker backwards
- Output differences found through evaluating each function with

constants set to 0 and replacing + with XOR
- Certain algorithm used to find truncation mask based on bitwise

difference probabilities
- Another algorithm to estimate error probability
- Found tradeoff between dimension of linear spaces and error

probability
- Truncation mask weight didn’t vary results much
- Linear space choices highly restricted by padding requirements

- One-block pseudo-preimages
- Biclique/splice and cut technique to split the function
- Attack parameter search is very similar

- Two-block preimages
- Find the one-block pseudo-preimage of the second block and

preimage of that pseudo-preimage
- Doesn’t work for more than 57 rounds

- Accelerated brute force search
- Don’t recompute parts of the hash if they’re identical for diff

messages - can use to test a set of messages XORed with fixed
differences after splitting the function into three components

- Speed up of about 2 for SHA-1
- Conclusion

- Meet in the middle attack with differential cryptanalysis -
principally two related-key differential sets

- Effective up to 57 steps
- Does not rely on general strategy of converting pseudo-preimage

to preimage attacks
- Better probabilistic matching



Dong 38

- More difficult to apply to other hashes like SHA-2 because
nonlinear message expansion

Research Question/Problem/
Need

Can meet-in-the-middle differential cryptanalysis be used to create a faster SHA-1
preimage attack?

Important Figures

Fig. 1. Illustration of the meet-in-the-middle attack: A match between the lists L1
and L2 identifies a preimage. Here, the D1 and D2 only have dimension 1 which
allows to test four messages at the cost of two. In general, 22d messages are tested
at the cost of 2d , where d is the dimension of D1 and D2.

Fig. 3. Separation of F for pseudo-preimage attacks. Bicliques are constructed for
F3.

Fig. 4. Preimage attacks against reduced SHA-1: Illustration of the new results and
comparison to accelerated brute-force



Dong 39

VOCAB: (w/definition) Biclique - a bipartite graph where every vertex of the first set is connected to every
vertex of the second set
Meet-in-the-middle attack - known-plaintext attack that attacks cryptosystems
with multiple encryptions by simultaneously testing decoding and encoding
Davies-Meyer function - a compression function used to create cryptographic hash
functions, that takes in an n-bit initial value and uses the input as a key
Affine set - for any two points in the set, the line passing through those points also
lies in the set
Related-key differential - a fixed difference in keys in a function results in a certain
difference in outputs
Hamming weight - number of 1s in a string of bits
Key expansion - when a single key is expanded into a series of round keys (this is
linear when the operations used are linear transformations such as matrices or
bitwise XOR)
Kernel - all the inputs of a linear transformation that maps to a 0 vector

Cited references to follow up on Aoki, K., & Sasaki, Y. (2009). Meet-in-the-middle preimage attacks against reduced

SHA-0 and SHA-1. In S. Halevi (Ed.), Advances in Cryptology—CRYPTO 2009

(Vol. 5677, pp. 70–89). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-03356-8_5

Chabaud, F., & Joux, A. (1998). Differential collisions in SHA-0. In H. Krawczyk (Ed.),

Advances in Cryptology—CRYPTO ’98 (Vol. 1462, pp. 56–71). Springer

Berlin Heidelberg. https://doi.org/10.1007/BFb0055720

Follow up Questions Can MITM techniques, such as those used for splitting the hash function and the
incorporation of differential techniques, be used to accelerate the neural network
chains?
Can linear cryptanalysis also be used to augment MITM attacks?

https://doi.org/10.1007/978-3-642-03356-8_5
https://doi.org/10.1007/978-3-642-03356-8_5
https://doi.org/10.1007/BFb0055720


Dong 40

Article #15 Notes: Cryptanalysis method and system
Article notes should be on separate sheets

Source Title Cryptanalysis method and system

Source citation (APA Format) Barkan, E., & Biham, E. (2021). Cryptanalysis method and system (Patent No.

10924462B2). U.S. Patent and Trademark Office.

https://patents.google.com/patent/US10924462B2

Original URL https://patents.google.com/patent/US10924462B2

Source type Patent

Keywords N/A

#Tags #cs, #cryptanalysis

Summary of key points + notes
(include methodology)

- GSM is a popular method of cellular communication protected by
encryption by the A5 family of functions

- Testing the level of security of this protocol may be desirable, so
an efficient cryptanalytic method is needed

- Stream cipher is used instead of block cipher since error correction
is used, so a flipped bit will not propagate changes

- Previous work has not been effective for all of the time; has not been able
to find the session key, which is critical for extending the attack; or has
been effective but not practical

- A5/2 consists of 4 registers represented by XORed polynomials
- Each step of A5/2, the first 3 registers are clocked
- Then, the 4th register is clocked, and one output bit is ready,

which is a nonlinear function of the internal states of the first
three registers

- The values in the fourth register act as inputs for the clocking
mechanism of the first 3 registers

- A quadratic majority function is then used to clock the first 3
registers to the 4th register

- 99 bits of output are discarded and 228 bits are used
- 114 bits are used to encrypt the connection from the network to

the customer, and the 114 remaining for vice versa
- The patent covers new methods for attacking A5/1, A5/2, and to an extent

A5/3 encryption, allowing an attacker to hijack GSM communications
- Ciphertext-only cryptanalytic attack on A5/1

https://patents.google.com/patent/US10924462B2


Dong 41

- Efficient known-plaintext attack on A5/2 - trying all possible values
of the fourth register and solving the produced system of
equations to deduce the values for the other three registers,
which suggests the value of the key

- Constructs linearized variables that describe the output of
the hash through a system of equations, which is then
solved using Gauss elimination

- Can be optimized greatly by filtering for plausible values of
the fourth register

- Since GSM uses error-correction codes before encryption, the
previously-described attack be adapted to a ciphertext-only attack

- If the error-correction scheme is known, it can be
transformed into a linear equation with the ciphertext in
terms of the key

- Then, substitution of each bit in the key provides the
ciphertext in terms of the initial frame/block, which
provides a system of equations which can then be solved
by the previously described method

- Since A5/1 and A5/3 use the same session key as A5/2 by design,
this attack can be extended to them

- Very fast in practice (milliseconds), although precomputation takes
significant computing power

- Can be carried out in practice with a man-in-the-middle attack
- Applications include eavesdropping on or hijacking conversations

- Can also be applied to GPRS (General Packet Radio Service), a newer,
higher-tech service for GSM

- Demonstrates the weakness of the currents algorithms used in GSM
- Can possibly be patched by eliminating the error-correction code

stage before encryption, which critically weakened the system
- More frequent authentication may be helpful
- Could use more of the available key bits for encryption

Research Question/Problem/
Need

How can known-plaintext and ciphertext-only attacks be conducted on the A5
family of functions?



Dong 42

Important Figures

Fig. 5. A method for ciphertext only attack



Dong 43

Fig. 6. A Known Plaintext Attack on A5 / 2 Method

VOCAB: (w/definition) A5 - a family of stream ciphers used in the GSM telephone standard
Stream cipher - a symmetric key cipher where each digit of the plaintext is
combined with a pseudo randomly-generated stream of ciphertext digits
Ciphertext-only attack - cryptanalytic attack model where only a set of ciphertexts
are known
Frame - single communication instance

Cited references to follow up on Ohmori, M., Matsuzaki, N., Tatebayashi, M., & Maruyama. (2002). Block cipher

using key data merged with an intermediate block generated from a



Dong 44

previous block (Patent No. 6459792B2). U.S. Patent and Trademark Office.

https://patents.google.com/patent/US6459792B2/

Follow up Questions Can this technique be applied to other stream ciphers?
Is there a common approach to converting known-plaintext to ciphertext-only
attacks?



Dong 45

Article #16 Notes: Improving Attacks on Round-Reduced

Speck32/64 Using Deep Learning
Article notes should be on separate sheets

Source Title Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning

Source citation (APA Format) Gohr, A. (2019). Improving attacks on round-reduced Speck32/64 using deep

learning. In A. Boldyreva & D. Micciancio (Eds.), Advances in Cryptology –

CRYPTO 2019 (Vol. 11693, pp. 150–179). Springer International Publishing.

https://doi.org/10.1007/978-3-030-26951-7_6

Original URL https://eprint.iacr.org/2019/037

Source type Conference paper

Keywords Deep learning, differential cryptanalysis, Speck

#Tags #cs, #ai, #cryptanalysis, #related-work, #methods

Summary of key points + notes
(include methodology)

- Calculated predicted difference distribution of Speck32/64 with specific
input difference under Markov assumption for up to eight rounds, yielding
good model of difference distribution of the hash

- Around 34 GB of distribution data for each round
- Validated model validity by checking highest-probability

differential transition, checking true positive rates for the
distinguishers on the distribution compared to an observed
dataset, and by comparing distinguisher performance to those
trained on 100 billion samples of empirical data

- Produced distinguishers based on deep residual neural networks with
mean key rank roughly five times lower than classical distinguishers
making use of the difference distribution table produced

- Fairly strong distinguishers can be developed up to round 6 with
very small datasets using few-shot learning - also helpful for
deriving good input differences without human input

- Input as a matrix based on the words in the ciphertext pairs
- Best network architectures was a bit sliced convolution into a

residual tower of two-layer convolutional neural networks,
interpreted by a densely-connected prediction layer

- 5 and 6 rounds used depth-10 tower, while 7 and 8 rounds used

https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-030-26951-7_6
https://eprint.iacr.org/2019/037


Dong 46

just one residual block
- Ample use of batch normalization and ReLU, with an output with

sigmoid activation
- Data (plaintext and keys) was generated using Linux’s random

number generation and encrypted - 107 samples
- Key search used to optimize
- 8-round distinguisher only slightly stronger than classical

distinguisher
- Distinguishers can be extended by one round using key ranking

techniques and evaluated by combining their ciphertext pair
scores to get key scores

- A full key recovery attack on any Speck variant with a free key
schedule using purely differential techniques cannot have a
success rate beyond 50% -> neural distinguishers hence improve
this since they are not purely differential

- Developed key search scheme using Bayesian optimization that, in
conjunction with the neural distinguishers, greatly reduces security of
11-round Speck

- Partial key recovery attack can be conducted
- Wrong key response profile (Fig. 3.) can be used for key search
- Algorithm is first tried on each ciphertext structure and then

iterated until the key is guessed correctly (or a limit is reached)
- First round key and at most two bits off for second round key - 521

out of 1000 trials
- Neural distinguishers use features of the ciphertext pair distribution

unable to be detected by classical distinguishers, outside of the difference
distribution table

- Real differences experiment - distinguish ciphertexts given the
random and real difference distributions are the same

- Neural distinguishers perform better than random guessing in this
experiment without any retraining, while classical distinguishers
are useless

- Key search technique also adapted for this situation
- The neural distinguishers don’t use any properties of the Speck key

schedule, as they perform just as well with a free key schedule
- Relatively fast training - minutes, with access to a graphics card
- Transferrable to other hashes, as the networks only have knowledge of the

word structure of Speck
- The use of Bayesian optimization and other key search techniques are

useful for any situation where the exploited function is expensive to
evaluate

- First paper to demonstrate a neural attack on a cipher or hash that
improves upon state of the art

Research Question/Problem/
Need

Can neural-network-based distinguishers be effective on the Speck32/64 hash?



Dong 47

Important Figures

Fig. 1. Training a neural network to distinguish 5-round Speck32/64 output for the
input difference ∆ = 0x0040/0 from random data. (left) Training and validation loss
by epoch. (right) Validation accuracy. (both) Only data for epochs with lowest
learning rate is shown. Intermediate epochs contained excursions to low
performance. Full learning history for this run is available from supplementary
data.

Fig. 2. Few-shot learning on the D5 and D6 tasks using a pre-trained classifier to
preprocess the input data. Algorithm 2 was used with a fixed auxiliary network
trained to distinguish Speck32/64 reduced to three rounds with a random fixed
input difference. The number of training examples supplied was varied from 1 to
50. The accuracy figures shown are an average over 100 runs for each training set
size, where for each training run a fresh training set of the indicated size was
generated on the fly. Accuracy was measured against a fixed test set of size 50000.
Measured accuracy is above guessing at 2σ significance level even for a single
training example.



Dong 48

Fig. 3. Wrong key response profile (only µδ shown) for 8-round Speck32/64 and
our 7-round neural distinguisher. For each difference δ between trial key and right
key, 3000 ciphertext pairs with the input difference 0x0040/0000 were encrypted
for 8 rounds of Speck using randomly generated keys and then decrypted for one
round using a final subkey at difference δ to the right key. Differences are shown
on the x-axis, while mean response over the 3000 pairs tried is shown in the y-axis.

VOCAB: (w/definition) Speck - NSA block cipher family designed for IOT devices
Cryptographic distinguisher - distinguishes between pairs of ciphertext and strings
generated randomly
Markov assumption - the assumption that the Markov property, that future
evolution is independent of a system’s past states, holds
Residual neural network - deep neural network architecture with skip connections,
designed to support hundreds or thousands of layers
Bayesian optimization - design strategy for optimization of black-box functions,
usually used to optimize functions that are expensive to evaluate
Key schedule - subkeys in a hash used in each round

Cited references to follow up on Greydanus, S. (2017). Learning the Enigma with recurrent neural networks

(arXiv:1708.07576). arXiv. http://arxiv.org/abs/1708.07576

Rivest, R. L. (1993). Cryptography and machine learning. In H. Imai, R. L. Rivest, & T.

Matsumoto (Eds.), Advances in Cryptology—ASIACRYPT ’91 (Vol. 739, pp.

427–439). Springer Berlin Heidelberg.

https://doi.org/10.1007/3-540-57332-1_36

Follow up Questions Can the neural distinguishers be optimized by using information from the
precomputed difference distribution?
Why were residual convolutional neural networks the most effective for this task?

http://arxiv.org/abs/1708.07576
https://doi.org/10.1007/3-540-57332-1_36
https://doi.org/10.1007/3-540-57332-1_36


Dong 49

Article #17 Notes: Double-hashing operation mode for

encryption
Article notes should be on separate sheets

Source Title Double-hashing operation mode for encryption

Source citation (APA Format) Almuhammadi, S. A., & Amro, A. (2021). Double-hashing operation mode for

encryption (Patent No. 10887080B2). U.S. Patent and Trademark Office.

https://patents.google.com/patent/US10887080B2

Original URL https://patents.google.com/patent/US10887080B2

Source type Patent

Keywords N/A

#Tags #cs, #cybersecurity

Summary of key points + notes
(include methodology)

- DHOME - Double-Hashing Operation Mode for Encryption, the invention
- Big data involves extremely large and complex datasets, which require

secure and performant encryption schemes
- Patent documents encryption scheme for big data using double hashing,

involving two different hash functions, to improve security
- Supports both symmetric and asymmetric key handling
- Ciphertext header structure allows efficient cloud data sharing since only

the header must be re-encrypted, not the data itself
- Generate a random seed of at least 512 bits, encrypt the seed with a seed

key and store it in the header, hash the seed two times to acquire a key
stream, and use that key stream to encrypt the data (most likely through
XOR)

- The first hash outputs a different number of bits than the second
- The seed key could be a shared secret key or a public key, where a private

key is then used to decrypt the header
- The plaintext and ciphertext are split into corresponding segments with

length of the output of the second hash function
- The hash functions should be like those in the SHA-2 family; the MD family

and the SHA-3 family may also be used
- Symmetry or asymmetry can be varied based on the method the seed is

encrypted with, such as AES or RSA
- The second hash helps resist known-plaintext and chosen-ciphertext

attacks by masking the relationship between the key stream and the

https://patents.google.com/patent/US10887080B2


Dong 50

values generated from the seed through the first hash
- Even if the entire key stream is revealed, the main seed and key

are still secure due to the second hash
- The patent suggests SHA-384 for the first hash and SHA-512 for the second

hash, based on sensitivity analysis minimum results
- AES-256 is 1.71 times slower than DHOME (a significant difference)
- Other techniques such as preimage attacks are not effective due to the

double-hash structure

Research Question/Problem/
Need

Can a secure encryption scheme be created by combining two different hash
functions?

Important Figures

FIG. 2. Illustrates a block diagram of DHOME according to an exemplary aspect of
the disclosure

FIG. 3. A flowchart illustrating seed encryption modes according to an exemplary



Dong 51

aspect of the disclosure

FIG. 4. A flowchart illustrating the encryption scheme according to an exemplary
aspect of the disclosure

VOCAB: (w/definition) Asymmetric key cipher - keys exist as public and private key pairs, where anyone
can encrypt with the public key, but only those with access to the private key can
decrypt
AES - Advanced Encryption Standard, a NIST block cipher succeeding DES with a
size of 128 bits

Cited references to follow up on Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., & Wang, L. (2009). Preimages for

step-reduced SHA-2. In M. Matsui (Ed.), Advances in Cryptology –

ASIACRYPT 2009 (Vol. 5912, pp. 578–597). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-10366-7_34

Follow up Questions Can this architecture be challenged with a meet-in-the-middle attack (even if the
two hash functions used are different)?
How will the seed be securely randomly generated?

https://doi.org/10.1007/978-3-642-10366-7_34
https://doi.org/10.1007/978-3-642-10366-7_34


Dong 52

Article #18 Notes: Learning the Enigma with Recurrent

Neural Networks
Article notes should be on separate sheets

Source Title Learning the Enigma with Recurrent Neural Networks

Source citation (APA Format) Greydanus, S. (2017). Learning the Enigma with recurrent neural networks

(arXiv:1708.07576). arXiv. http://arxiv.org/abs/1708.07576

Original URL https://arxiv.org/abs/1708.07576

Source type arXiv preprint

Keywords N/A

#Tags #cs, #ai, #cryptanalysis, #introduction, #related-work, #methods

Summary of key points + notes
(include methodology)

- The decryption process can be seen as a sequence-to-sequence translation
task, so RNNs can be applied

- Learn algorithmic representations of complex polyalphabetic
ciphers in an automated manner

- Machine-learning-based approaches
- Previous work with the Vignere cipher and a simply feedforward

neural network was reliant on the cipher’s architecture and greatly
simplified, while this paper develops a robust and
generally-applicable approach

- Train a neural network to minimize the loss between the modeled
decryption function and the actual decryption method

- Training examples were constructed by simply concatenating the key,
plaintext, and ciphertext matrices

- LSTM is sufficient to store the key in memory
- Used a single LSTM cell with a fully-connected softmax layer

- Additional layers/cells were too slow
- Loss initially decreases rapidly as the neural network learns simple

statistical distributions
- Accuracy increases rapidly a bit later, when the model presumably

begins learning the cipher itself
- A large portion of training is then spent on an accuracy increase of

5%
- Three types of polyalphabetic ciphers were considered: Vignere, Autokey,

Enigma
- Training data was generated on the fly to reduce memory load and

http://arxiv.org/abs/1708.07576
https://arxiv.org/abs/1708.07576


Dong 53

likelihood of overfitting
- Ciphertext length 14, key length 6 (3 for Enigma)

- Used “Xavier” initialization for all hyperparameters based on previous
work

- Mini batch stochastic gradient descent with batch size 50 and the
Adam optimizer

- Double-checked for overfitting
- Performs well on new phrases and messages of variable length
- LSTM required memory size of at least 2048 units for Enigma
- Magnitudes of hidden activations may increase linearly within the neural

network, potentially contributing to lower decryption accuracy on very
long sequences

- For different keys, the Enigma hidden activations change completely, but
only the magnitudes change for different messages

- Suggests th neural net is a switch unit that only works in certain
situations

- Examination of the hidden activations for each RNN yields that they reflect
qualitative properties of their respective ciphers and are relatively unique,
suggesting that the neural networks may hold interesting information
about the hash it is modeling

- The neural network for Enigma requires a significant amount of memory
compared to Autokey (slightly higher since its internal representation of
the key must be updated during the hash) and Vignere (lowest since it
uses a static key value)

- This work can be trivially extended to a key-recovery attack
- Quite data inefficient - model needs at least a million training examples to

learn a cipher, which is impractical
- First general method for modeling and reversing polyalphabetic ciphers

Research Question/Problem/
Need

Can recurrent neural networks conduct cryptanalysis on polyalphabetic ciphers,
most notably the Enigma cipher?



Dong 54

Important Figures

Figure 1: Our LSTM-based model can learn the decryption function of the Enigma
from a series of ciphertext and plaintext examples.

Figure 2: (a) Expressing the decryption process as a sequence-to-sequence
translation task. (b) Our Recurrent Neural Network (RNN) -based model unrolled
for time steps 6 to 9 (FC: fully-connected layer).



Dong 55

Figure 3: Loss decreases rapidly at first, around 5000 train steps, as the network
learns to capture simple statistical distributions. Later, around 100000 train steps,
model learns the Enigma cipher itself and accuracy spikes. A significant portion of
training, starting around 350000 train steps, is spent gaining the last 5% accuracy.

Figure 4: The model, trained on messages of 20 characters, generalizes well to
messages of over 100 characters for the Vigenere and Autokey ciphers.
Generalization occurs on the Enigma, but to a lesser degree, as the task is far more
complex.

Figure 6: Shown above are test accuracies of our model on the Vigenere and
Autokey cipher tasks. Notice that for small RNN memory sizes (64 and 128 hidden
units), the model achieves better performance on the Vigenere task. Meanwhile,
for large memory sizes (256 and 512 hidden units), the model converges to 99+%
accuracy more rapidly on the Autokey task. Evidently, the model’s test accuracy is
more sensitive to memory size on the Autokey task than on the Vigenere task.



Dong 56

VOCAB: (w/definition) Polyalphabetic cipher - substitution cipher using multiple alphabets
Recurrent neural network - bidirectional neural network type where the outputs of
some nodes affect inputs to the same nodes
Long Short-Term Memory (LSTM) - RNN type based on being able to store some
values in memory (easier to train in practice)

Cited references to follow up on Kearns, M., & Valiant, L. (1994). Cryptographic limitations on learning boolean

formulae and finite automata. Journal of the ACM, 41(1), 67–95.

https://doi.org/10.1145/174644.174647

Follow up Questions Why are recurrent neural networks suitable for this task?
Can these findings be extended past polyalphabetic ciphers, which are relatively
weak compared to modern-day hash functions?

https://doi.org/10.1145/174644.174647
https://doi.org/10.1145/174644.174647


Dong 57

Article #19 Notes: Cryptography and machine learning
Article notes should be on separate sheets

Source Title Cryptography and machine learning

Source citation (APA Format) Rivest, R. L. (1993). Cryptography and machine learning. In H. Imai, R. L. Rivest, & T.

Matsumoto (Eds.), Advances in Cryptology—ASIACRYPT ’91 (Vol. 739, pp.

427–439). Springer Berlin Heidelberg.

https://doi.org/10.1007/3-540-57332-1_36

Original URL https://link.springer.com/chapter/10.1007/3-540-57332-1_36

Source type Conference paper

Keywords N/A

#Tags #cs, #ai, #cybersecurity, #cryptanalysis, #introduction

Summary of key points + notes
(include methodology)

- Machine learning and cryptanalysis are very similar, almost like “sister”
fields

- Cryptanalysis is essentially attempting learn an unknown function,
the decryption function, given a certain amount of information,
like machine learning

- Key and key space corresponds to target function and class of
target functions, although some assumptions differ

- Different attack types are analogous to query types and vary in
prior knowledge

- Exact vs approximate inference
- Computational complexity is extremely important - time-space

tradeoffs also factor in
- Minimum information needed to solve the problem

- Cryptography shows that certain classes of functions such as boolean
formulas are computationally intractable

- For both representation-dependent and
representation-independent results

- Representation-dependent - finding a function represented in a
certain way is computationally intractable, proven NP-complete
assuming P does not equal NP

- Machine learning theory has also had an impact on cryptography
- Could be used to cryptanalyze simple cryptosystems
- Cipher-feedback systems

https://doi.org/10.1007/3-540-57332-1_36
https://doi.org/10.1007/3-540-57332-1_36
https://link.springer.com/chapter/10.1007/3-540-57332-1_36


Dong 58

- If plaintext and ciphertext pairs are known, a learning
algorithm could be used to infer the function

- Approximate learning is sufficient
- Various learning techniques can be used to infer the

function given that it belongs to a certain class, so the
cryptosystem can be strengthened by avoiding these
classes

- Learning theory may enable more effective information
compression, which strengthens cryptographic functions

Research Question/Problem/
Need

What is the connection between machine learning and the fields of cryptography
and cryptanalysis?

Important Figures

Figure 1: In cipher-feedback mode, each plaintext message bit m is encrypted by
exclusive-oring it with the result of applying the function f to the last n bits of
ciphertext, where n is the size of the shift register. The ciphertext bit c is
transmitted over the channel; the corresponding decryption process is illustrated
on the right.

VOCAB: (w/definition) Computationally intractable - a problem that can be solved in theory but takes too
many resources in practice
NP - nondeterministic polynomial time, a problem that cannot be computed
deterministically with polynomial time complexity
Cipher-feedback system - using a block cipher as a stream cipher

Cited references to follow up on Naor, M., & Yung, M. (1990). Public-key cryptosystems provably secure against

chosen ciphertext attacks. Proceedings of the Twenty-Second Annual ACM

Symposium on Theory of Computing - STOC ’90, 427–437.

https://doi.org/10.1145/100216.100273

https://doi.org/10.1145/100216.100273
https://doi.org/10.1145/100216.100273


Dong 59

Follow up Questions How could modern machine-learning techniques, such as transformer architecture
or denoising diffusion, be applied to cryptanalysis?
If a Davies-Meyer hash uses a learnable round compression function, is the hash as
a whole learnable?



Dong 60

Article #20 Notes: A Deeper Look at Machine

Learning-Based Cryptanalysis
Article notes should be on separate sheets

Source Title A Deeper Look at Machine Learning-Based Cryptanalysis

Source citation (APA Format) Benamira, A., Gerault, D., Peyrin, T., & Tan, Q. Q. (2021). A deeper look at machine

learning-based cryptanalysis. In A. Canteaut & F.-X. Standaert (Eds.),

Advances in Cryptology – EUROCRYPT 2021 (Vol. 12696, pp. 805–835).

Springer International Publishing.

https://doi.org/10.1007/978-3-030-77870-5_28

Original URL https://eprint.iacr.org/2021/287

Source type Conference paper

Keywords Differential Cryptanalysis, SPECK, Machine Learning, Deep Neural Networks,
Interpretability

#Tags #cs, #ai, #cryptanalysis, #related-work

Summary of key points + notes
(include methodology)

- Gohr presented a deep neural network-based cryptographic distinguisher
on the NSA block cipher Speck at CRYPTO2019 (see article #16)

- Improved over state-of-the-art with both the distinguisher and the
corresponding key recovery attack

- Potential as a generic tool to carry out basic cryptanalysis of a
cipher

- Not clear what information the neural network is actually
deducing -> needs to be interpreted

- Unknown what extra property the neural network is using past the
difference distributions

- Specified input difference minimizes differences for 3 or 4 rounds
- Restricted neural distinguishers to only have access to the difference

distributions by changing the input to only the difference, not the pairs
themselves, and found that they performed worse

- Found that the neural distinguisher relies not only on the differential
distribution of the ciphertext pairs, but also the differential distributions of
the second to last and third to last rounds

- Analyzed ciphertext pairs and modeled difference propagation

https://doi.org/10.1007/978-3-030-77870-5_28
https://eprint.iacr.org/2021/287


Dong 61

across rounds
- Retrained distinguisher with various experimental conditions

- Non-neural Speck distinguisher using selective partial decryption for 5, 6, 7
rounds constructed based on these findings achieved same accuracy and
even better efficiency compared to Gohr’s findings

- DDT used was approximated with a dataset the same size as that
used to train the neural distinguisher

- Trained both neural and modified distinguisher on AES-2-2-4 and
obtained similar accuracies, around 60%

- Built a simplified neural distinguisher with almost the same accuracy
- First tried other, easier to interpret machine learning models, with

significantly lower accuracy
- Replaced the final MLP block with an LGBM and modified it closer

to accuracy of the original - more interpretable
- Built new NN based on conjectured properties with same

efficiency and good accuracy, but much more interpretable
- Performed well with the Simon block cipher as well

- Found that the distinguisher builds a good approximation of the DDT of
Speck and uses this information to classify ciphertext pairs, based on
interpretability work

- Optimized neural distinguisher by using batches of ciphertexts instead of
pairs

- Converted input to a 2D CNN to take in more ciphertexts,
significantly improving accuracy

- Achieved 100% accuracy for batch size 10 on round 5 and size 50
on round 6

- 99.7% accuracy with batch size 100 on round 7, a significant
improvement over the original

- Used same size dataset/amount of ciphertexts as original
- The neural distinguisher is not using a novel cryptanalytic technique, but

optimizing information extraction

Research Question/Problem/
Need

How does the Speck32/64 neural distinguisher work internally, and how can it be
simplified and improved?

Important Figures

Fig. 2: The whole pipeline of Gohr’s deep neural network. Block 1 refers to the



Dong 62

initial convolution block, Block 2-1 to 2-10 refer to the residual block and Block
3 refers to the classification block.

Fig. 7: The left (resp. right) part shows how the active bit from difference
0x8000/8000 (resp. 0x8100/8102) propagates to difference 0x8100/8102
(0x8000/820a). The darker the color, the higher the probability (≥ 1/4 ) that it has
a carry propagated to.

VOCAB: (w/definition) Differential Distribution Table - table describing frequencies of output differences
based on generated plaintext pairs with a certain input difference
Selective partial decryption - partial decryption is performed using a hypothesis on
the subkey of the last round and filtered using a precomputed DDT
Light Gradient Boosting Machine - gradient-boosting framework based on decision
tree algorithms
Gradient-boosting - ML technique using an ensemble of weak prediction models to
form strong predictions

Cited references to follow up on Maghrebi, H., Portigliatti, T., & Prouff, E. (2016). Breaking cryptographic

implementations using deep learning techniques. In C. Carlet, M. A. Hasan,

& V. Saraswat (Eds.), Security, Privacy, and Applied Cryptography

Engineering (Vol. 10076, pp. 3–26). Springer International Publishing.

https://doi.org/10.1007/978-3-319-49445-6_1

Follow up Questions Will neuro-cryptanalysis always model existing approaches?
If CNNs, which are traditionally used for computer vision, can be of use in
cryptanalysis, how can other complex architectures, such as transformers,
potentially be used?

https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1


Dong 63

Article #21 Notes: Does machine learning need fuzzy

logic?
Article notes should be on separate sheets

Source Title Does machine learning need fuzzy logic?

Source citation (APA Format) Hüllermeier, E. (2015). Does machine learning need fuzzy logic? Fuzzy Sets and

Systems, 281, 292–299. https://doi.org/10.1016/j.fss.2015.09.001

Original URL https://www.sciencedirect.com/science/article/pii/S0165011415004133

Source type Journal paper

Keywords Fuzzy sets, fuzzy logic, machine learning

#Tags #cs, #fuzzbits, #introduction

Summary of key points + notes
(include methodology)

Note: although slightly outside of my field of interest, I am investigating this area
due to the suggestion by Goncharov, 2019 to improve the effectiveness of neural
networks performing cryptanalysis by employing fuzzy logic

- Fuzzy machine learning - emerged after the advent of fuzzy logic as a field
- Shift from knowledge-based manual design to data-driven

automatic construction
- Fuzzy logic usually used for deductive reasoning, while machine

learning is inductive
- Majority of fuzzy ML papers are about fuzzification of standard methods

such as decision trees or nearest neighbor estimation
- The increased flexibility may improve accuracy
- Less ties for decision trees, which is useful in ranking
- Fuzzification is usually straightforward
- Fuzzy models still implement standard functions, mapping normal

input to normal output, so their benefits are not very apparent
- May cause an increase in computational complexity and risk of

overfitting
- Sometimes shallow link to actual fuzzy logic, excluding fuzzy rule

induction and decision tree learning
- Interpretability is a core argument for fuzzy ML

- Fuzzy models, which are rule-based, often have far too many rules
and complicated weighting/aggregation schemes, making them
not as interpretable as they first appear

- Fuzzy sets are strongly influenced by their dataset and do not

https://doi.org/10.1016/j.fss.2015.09.001
https://www.sciencedirect.com/science/article/pii/S0165011415004133


Dong 64

often produce semantically meaningful clusters to interpret
- Interpretability cannot be translated from knowledge-based to

data-driven models
- Epistemic uncertainty is incomplete knowledge about the true relationship

between the input and output, which can be modeled with fuzzy sets of
candidate models

- However, current research on this fails to justify how exactly it
addresses uncertainty and is difficult to test empirically

- Learning from fuzzy data is again not well-defined, although it may be a
useful tool

- Such data might not be readily available, although there are some
interesting adaptation methods

- A grayscale image, for example, can be interpreted as a fuzzy set
- Precise data can be fuzzified to control the influence of individual

observations
- Fuzzy modeling can be applied to much more than the current literature,

such as modeling the data space in terms of fuzzy logic for learning
algorithms to then operate on more efficiently

- Fuzzy logic may be suitable for non-inductive learning such as transfer
learning, as it can represent the knowledge process transfer

- Fuzzy theories on uncertainty, such as imprecise probability, may be able
to complement current probabilistic methods in machine learning

- Especially applicable to my project since my function is difficult to
model and the model distribution may not be fully known

- Although fuzzy machine learning still needs to be formalized and further
scrutinized, it has the potential for interesting contributions to machine
learning

Research Question/Problem/
Need

Does machine learning need fuzzy logic?

Important Figures N/A

VOCAB: (w/definition) Fuzzy machine learning - fuzzy systems used in ML
Fuzzy set - sets where elements have varying degrees of membership
Imprecise probability - generalization of probability theory to allow for partial
specifications

Cited references to follow up on Berlanga, F. J., Rivera, A. J., Del Jesus, M. J., & Herrera, F. (2010). GP-COACH:

Genetic Programming-based learning of COmpact and ACcurate fuzzy

rule-based classification systems for High-dimensional problems.

Information Sciences, 180(8), 1183–1200.

https://doi.org/10.1016/j.ins.2009.12.020

https://doi.org/10.1016/j.ins.2009.12.020
https://doi.org/10.1016/j.ins.2009.12.020


Dong 65

Hüllermeier, E. (2014). Learning from imprecise and fuzzy observations: Data

disambiguation through generalized loss minimization. International

Journal of Approximate Reasoning, 55(7), 1519–1534.

https://doi.org/10.1016/j.ijar.2013.09.003

Follow up Questions Can the fuzzy conception of uncertainty be applied to approximate some parts of
complex, high-dimensional distributions given insufficient data?
Does fuzzification aid in gradient descent by providing granularity?
In what way is a fuzzy distribution optimized—what is the definition of
optimization for such a distribution?

https://doi.org/10.1016/j.ijar.2013.09.003
https://doi.org/10.1016/j.ijar.2013.09.003


Dong 66

Article #22 Notes: Deep Learning-Based Cryptanalysis of

Lightweight Block Ciphers
Article notes should be on separate sheets

Source Title Deep Learning-Based Cryptanalysis of Lightweight Block Ciphers

Source citation (APA Format) So, J. (2020). Deep learning-based cryptanalysis of lightweight block ciphers.

Security and Communication Networks, 2020, 1–11.

https://doi.org/10.1155/2020/3701067

Original URL https://www.hindawi.com/journals/scn/2020/3701067/

Source type Journal paper

Keywords N/A

#Tags #cs, #ai, #cryptanalysis, #related-work, #methods

Summary of key points + notes
(include methodology)

- Deep learning model attempts to find key based on plaintext-ciphertext
pairs of simplified DES, Simon, and Speck block ciphers

- Keyspace is restricted to 64 ASCII characters, or 512 bits
- First model successfully to break full rounds of Simon32/64 and

Speck32/64
- Traditional cryptanalysis does not have keyspace restriction or a

text-based key
- Impractical to generalize or automate classical cryptanalysis, but being

able to quickly check the security of lightweight block ciphers for IOT is
critical

- Standard DNN with ReLU activation
- Inputs layer neurons match to bits of the plaintext and ciphertext
- Output layer neurons match to bits of the key
- Estimated key is hence an iterated nonlinear transformation of the

input data
- MSE loss function - minimize difference between output and true

key
- Data is generated from publicly-available algorithms - testing data

is ciphertext plaintext pairs generated from different keys
- Plaintext is a random binary sequence
- Keys are textual and not all ASCII characters are used (see

Figure 4), meaning the probability that a certain bit is 1
isn’t simply 0.5

https://doi.org/10.1155/2020/3701067
https://doi.org/10.1155/2020/3701067
https://www.hindawi.com/journals/scn/2020/3701067/


Dong 67

- BAP used to evaluate
- Manually specified hyperparameters determined through testing -

5 hidden layers of 512 neurons each, with 5000 epochs
- Adam optimization

- Given M known plaintexts, the key is found through majority decision with
the DNN

- S-DES
- 50k training, 10k testing samples
- Evaluated with both textual key and random key - textual key was

successful
- Simon and Speck32/64

- 5*10^5 training, 10^6 testing samples
- Attack with random key fails
- Attack with textual key is successful

- Reduced search space greatly, but with large drawback of text-base key,
which is uncommon in practice

- Restricted keyspace necessary given complexity of ciphers

Research Question/Problem/
Need

Can a generic known-plaintext attack be developed using deep learning on
lightweight block ciphers?

Important Figures

Figure 1: A schematic diagram of the DL-based cryptanalysis.



Dong 68

Figure 4: Characters used in the text key generation.

Figure 5: Occurrence probability in the text key generation.



Dong 69

Figure 7: Bit accuracy in the S-DES with a random key.

Figure 10: Bit accuracy probability and deviation of the Simon32/64 with a text
key.



Dong 70

Figure 12: Bit accuracy probability and deviation of the Speck32/64 with a text key

VOCAB: (w/definition) Bit accuracy probability - the number of testing samples where a certain bit in the
output is correct, over the total number of testing samples

Cited references to follow up on Bafghi, A. G., Safabakhsh, R., & Sadeghiyan, B. (2008). Finding the differential

characteristics of block ciphers with neural networks. Information

Sciences, 178(15), 3118–3132. https://doi.org/10.1016/j.ins.2008.02.016

Gomez, A. N., Huang, S., Zhang, I., Li, B. M., Osama, M., & Kaiser, L. (2018).

Unsupervised cipher cracking using discrete GANs (arXiv:1801.04883).

arXiv. http://arxiv.org/abs/1801.04883

Hu, X., & Zhao, Y. (2018). Research on plaintext restoration of AES based on neural

network. Security and Communication Networks, 2018, 1–9.

https://doi.org/10.1155/2018/6868506

Follow up Questions Are the models trained on textual keys at all effective for random keys?
Can an effective model be trained based on a known, skewed key distribution, and
does this have applications?

https://doi.org/10.1016/j.ins.2008.02.016
http://arxiv.org/abs/1801.04883
https://doi.org/10.1155/2018/6868506
https://doi.org/10.1155/2018/6868506


Dong 71

Article #23 Notes: Applications of SAT Solvers in

Cryptanalysis: Finding Weak Keys and Preimages
Article notes should be on separate sheets

Source Title Applications of SAT Solvers in Cryptanalysis: Finding Weak Keys and Preimages

Source citation (APA Format) Lafitte, F., Nakahara, J., & Van Heule, D. (2014). Applications of SAT solvers in

cryptanalysis: Finding weak keys and preimages. Journal on Satisfiability,

Boolean Modeling and Computation, 9(1), 1–25.

https://doi.org/10.3233/SAT190099

Original URL https://content.iospress.com/articles/journal-on-satisfiability-boolean-modeling-a
nd-computation/sat190099

Source type Journal paper

Keywords SAT solvers, weak keys, preimage attacks, automated cryptanalysis, algebraic
cryptanalysis

#Tags #cs, #cryptanalysis, #preimage-attack, #introduction

Summary of key points + notes
(include methodology)

- Relevant to my project as another way to conduct a preimage attack, as
I’m currently exploring ways to extend my method

- Introduce an efficient, generic, automated method for representing
cryptographic computations as SAT problems

- Open sourced in the package cryptosat
- The relationship between the input and output bits can be

expressed as an SAT problem and the key bits can be solved for
- Generated using C++ operator overloading to encode the problem
- Applied SAT solver cryptominsat to 250 random message blocks

encrypted by MD4
- Applied SAT solvers to finding weak keys in block ciphers (solving a

previously open problem) and conducting a preimage attack against
hashes

- Allows discovery of weak key classes or proof they don’t exist under both
differential and linear attacks of full-round block ciphers WIDEA-n and
MESH-64(8)

- Weak key causes some subkeys to have value 0 or 1, turning
multiplication into a linear operation

- Results in a collision attack with only two compression function

https://doi.org/10.3233/SAT190099
https://doi.org/10.3233/SAT190099
https://content.iospress.com/articles/journal-on-satisfiability-boolean-modeling-and-computation/sat190099
https://content.iospress.com/articles/journal-on-satisfiability-boolean-modeling-and-computation/sat190099


Dong 72

computations
- Issue in design of function because weakness propagates from key

to ciphertext
- Found several classes of weak keys in full-round WIDEA-4

- Weak subkeys must be 0 for their first 15 most significant bits
- Found requirements for weak key by requiring 18 weak subkeys

and then solving with SAT solver
- Thousands of weak keys were found, taking just a few seconds

each, contradicting the claim that no weak keys exist for WIDEA
- Each weak key corresponds to a different, non-overlapping class

- WIDEA-4 is composed of 4 instances of the IDEA cipher,
and each key can only be used to attack one of these
instances

- Trying to solve for all instances at once yields an
unsatisfiable problem, so no such weak keys exist

- No weak keys are expected to exist for two instances at
once as well

- Weak keys were similarly found in WIDEA-8
- Proved that a certain class of weak keys don’t exist in MESH-64(8)

- Same scheme as WIDEA - weak keys follow the 1-round pattern of
differences/linear bit masks (depending on differential vs linear
angle) being untransformed with maximum probability

- SAT was unsatisfiable, so that particular class of weak keys does
not exist for MESH-64(8)

- Conducted preimage attack on reduced MD4
- Could invert up to 31 rounds in a few hours using a personal

computer

Research Question/Problem/
Need

Can SAT solvers be used in cryptanalysis to identify weak keys and conduct
preimage attacks?

Important Figures

Figure 2. The median CPU time (seconds) and memory (MB) used by the SAT solver
over 250 random instances, as a function of the number of unknown bits b. Each



Dong 73

curve corresponds to a different value for parameter s.

Figure 3. The median CPU time (seconds) and memory (MB) used by the SAT solver
over 250
random instances, as a function of the number of steps s. Each curve corresponds
to a different
choice of parameter b.

VOCAB: (w/definition) SAT - boolean satisfiability problem - determining if a boolean formula can be filled
in in a way that evaluates to true (similar to solving an algebraic equation, but with
boolean values)
Weak key - a key that leads to nonrandom cipher behavior

Cited references to follow up on Mironov, I., & Zhang, L. (2006). Applications of SAT solvers to cryptanalysis of hash

functions. In A. Biere & C. P. Gomes (Eds.), Theory and Applications of

Satisfiability Testing—SAT 2006 (Vol. 4121, pp. 102–115). Springer Berlin

Heidelberg. https://doi.org/10.1007/11814948_13

Soos, M., Nohl, K., & Castelluccia, C. (2009). Extending SAT solvers to cryptographic

problems. In O. Kullmann (Ed.), Theory and Applications of Satisfiability

Testing—SAT 2009 (Vol. 5584, pp. 244–257). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-02777-2_24

Follow up Questions How do SAT solvers work internally? Can machine learning be applied to optimize
them?
How can the weak key search process be generalized and automated to search for
all classes of weak keys?

https://doi.org/10.1007/11814948_13
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-642-02777-2_24

