Project Notes:

Project Title: Name: DANIEL HARN

Note Well: There are NO SHORT-cuts to reading journal articles and taking notes from them. Comprehension is paramount. You will most likely need to read it several times, so set aside enough time in your schedule.

<u>Contents:</u>	
Knowledge Gaps:	1
Literature Search Parameters:	2
Article #1 Notes: Title	3
Article #2 Notes: Title	4
Article #1 Notes: Title	Error! Bookmark not defined.

Commented [1]: remember to share with Dr. C.

Commented [2]: Table of contents will be generated if using a HEADER format for each sub-section.

KEEPING THIS UP-TO-DATE WILL HELP YOU when it comes time to write your thesis.

Knowledge Gaps:

This list provides a brief overview of the major knowledge gaps for this project, how they were resolved and where to find the information.

Knowledge Gap	Resolved By	Information is located	Date resolved
Why IR is the best use of light for finding voids			
How does the location of voids correlate to what happens to the semiconductor			
Why is it that the semiconductor manufacturing processes is so inefficient			

Commented [4]: Because this is a living document, you will be updating this table regularly, therefore it doesn't make sense to worry about organizing every time you open this sheet. Remember the A Sort tool. You can sort based on how you resolved your issue, or you can choose a different organizational method. For example, you could add a column for date resolved and organize chronologically.

Commented [3]: Up date this page regularly as this can facilitate the writing process.

Commented [5]: Your notes file will grow as you continue to read. As a result, your page numbers might change. How do you ensure your references remain useful?

1. You could include enough information to find the notes page without a page number. Be careful of just using author names because you might have more than one source from the same first author. If you include title or full citation, that should be enough. 2. Insert a cross-reference

a. insert tab, cross-reference

 b. If you choose this path DON'T FORGET TO UPDATE THE FIELDS before you submit or print

Literature Search Parameters:

These searches were performed between (Start Date of reading) and XX/XX/2019. List of keywords and databases used during this project.

Database/search engine	Keywords	Summary of search
Google scholar	Semi Conductor Voids	3,6, 7
Google scholar	Low coherance infetronomy wafer bonding	4

Commented [6]: This can help you keep track of the searches you perform and what you searched for so that redundancy does not occur.

Commented [7]: This might seem like a silly addition, but if you read literature reviews or meta-analyses, you will notice this information is preserved. It is good practice to record how you found your information.

Tags:

Tag Name	

Article #1 Notes: Title

Article notes should be on separate sheets

KEEP THIS BLANK AND USE AS A TEMPLATE

Source Title	
Source citation (APA Format)	
Original URL	
Source type	
Keywords	
#Tags	
Summary of key points + notes (include methodology)	
Research Question/Problem/ Need	
Important Figures	
VOCAB: (w/definition)	
Cited references to follow up on	
Follow up Questions	Commented [10]: Questions are crucia

Commented [10]: Questions are crucial in leading you towards the next paper. This is a MANDATORY section and should include AT LEAST 3 Questions that stem from reading the paper.

Commented [8]: Remember to take notes and summarize the work in your own words. Doing this upfront will help you avoid PLAGIARISM.

Commented [9]: If you keep this as a HEADER- it will show up in your Table of Contents automatically.

Article #2 Notes: Title

Article notes should be on separate sheets

Source Title		
Source citation (APA Format)		
Original URL		
Source type		
Keywords		
#Tags		
Summary of key points + notes (include methodology)		
Research Question/Problem/ Need		
Important Figures		
VOCAB: (w/definition)		
Cited references to follow up on		
Follow up Questions		Commented [11]: Questions are crucial in leading yo towards the next paper. This is a MANDATORY secti

Article #1 Notes: THE METROLOGY AND THE BIM APPROACH: A NEW COGNITIVE PARADIGM ABOUT THE ANCIENT CONSTRUCTION

Article notes should be on separate sheets

Source Title	The International Society for Photogrammetry and Remote Sensing	
Source citation (APA	Fiamma, P. (2019). THE METROLOGY AND THE BIM APPROACH:	
Format)	A NEW COGNITIVE PARADIGM ABOUT THE ANCIENT	
	CONSTRUCTION. The International Archives of the Photogrammetry,	
	Remote Sensing and Spatial Information Sciences, XLII(2W17), 123-	
	127. https://doi.org/10.5194/isprs-archives-XLII-2-W17-123-2019	
Original URL	https://isprs-archives.copernicus.org/articles/XLII-2-W17/123/2019/	
Source type	Journal Article	
Keywords	KEY WORDS: ancient construction, BIM level, maintenance,	
	methodology, technical component modeling	
#Tags		

bu ion and should include AT LEAST 3 Questions that stem from reading the paper.

Summary of key points +	This article was about the idea that we could use Building Information
notes (include methodology)	Modeling (BIM) technology to make a Computer Aided Design (CAD) design of an architectural historical site. This BIM technology would scan the site and be able to make a CAD design of the site via metrology, capturing many measurements. The use of this technology has had its problems, as BIM technology was made to be used on modern buildings and architecture. The unusual, strangeness of historic architecture often results in mistakes as the BIM is not designed to look for these historic architecture pieces. The article specifically called out the Leaning Tower of Pisa in France and the difficulty BIM technology was successful in that case, it required some specific tinkering to deal with the old architectural work.
	 Notes: BIM is using lidar or fast lasers to map out the area to get a map of the incorporate it into cad Some of the older artifacts have weird constructional pieces so although it works you do need to make adjustments sometimes to help
Research Question/Problem/ Need	To attempt to record historical architecture without hurting it and having accurate measurements that will last post its destruction.

Last Name 6

	8		
	è		
	Figure 6. Object oriented mode	Lets for the maintenance needs	Figure 7. The modeling second up the maintenance program
VOCAB: (w/definition)	Lidar: A detinctio	on system that is	s based off radar but instead uses lasers
, , ,	BIM:A process w	vhereit is creatir	ng a 3 d model of a building (Builidng
	Information Mod	leling)	
	CAD: Computer	aided design is	the uses of computers to generate a 3 d
Cited references to follow up	image of a thing		
on			
Follow up Questions	How fast can lid	lar actually mak	e a cad design?
	How accurate is	this design?	-
	What are the mo	odern day uses	in fields like the military?

Article #2 Notes: A novel application of the white light/fringe projection duo: recovering high precision 3-D images from fossils for the digital preservation of morphology covered a major problem

Source Title	Paleontologist Electronica
Source citation (APA Format)	Óptica~ing.juancarlosg@gmail.com, J. C. GG. de I. en, Guadalajara~taniagutierrezgarcia@gmail.com, T. A. GG. de, León~jfmosino@gmail.com, J. F. M. N. de MI. T. de, México~evazquez@ecologia.unam.mx, E. VD. N. A. de, Óptica~amalia@cio.mx, A. M. de I. en, & Historia~arromatu5@yahoo.com.mx, J. AC. N. de A. e. (2015, August 15). <i>A novel application of the white light/fringe projection duo:</i> <i>Recovering high precision 3-D images from fossils for the digital</i> <i>preservation of morphology</i> . Palaeontologia Electronica. https://doi.org/10.26879/516
Original URL	https://palaeo-electronica.org/content/2015/1272-3d-fossil-images-and- white-light#link_tab
Source type	Journal Article
Keywords	
#Tags	
Summary of key points + notes (include methodology)	My article A novel application of the white light/fringe projection duo: recovering high precision 3-D images from fossils for the digital preservation of morphology covered a major problem. When attempting to get DNA out of a ancient fossil a lot of the time it ends up with the destruction or damage to the fossil. Due to this they thought that they could digitally preserv the fossil. With this problem they decided to use white light and and fringe projection duo to get extremely accurate measurements of the fossil to put online. With this use of technology they will be able to make a online replica so accurate that scientists will be able to maintain using the fossil to research things past destroying it too extract DNA.
Research Question/Problem/	How can people preserve a fossil and receive information fro it without
Need	damaging it.

Last	Name	9
------	------	---

Important Figures	Image: space
VOCAB: (w/definition)	Image: Second
	3d image: A image that hold both an X Y Z access
Cited references to follow up on	
Follow up Questions	Could applications of this technology be applied elsewhere, if so how? How accurate is this method of measurement? How does this method of scanning compare to similar methods.

Article #3 Notes: Inspection of Bonded Interfaces Using Scanning Infrared Interferometry

Article no	tes should be on separate sheets		
Source Title	The Electrochemical Society		
Source citation	Poduje, N., Kerr, W., & Turner, K. T. (2010). Inspection of Bonded Interfaces Using		
(APA Format)	Scanning Infrared Interferometry. ECS Transactions, 33(4), 537.		
	https://doi.org/10.1149/1.3483545		
Original URL	https://iopscience.iop.org/article/10.1149/1.3483545/pdf		
Source type	Journal Entry		
Keywords			
#Tags			
Summary of key	Summary: This article describes a new technique for measuring and investigating		
points + notes	voids within wafer bonded materials like semi conductors. These voids are extremely		
(include	small gaps in the wafer bonding and can lead to malfunctions with the computer chip.		
methodology)	There are two methods they test the classic (IR) method or infrared infetronomy witch		
	works by shining a light through the layers of the wafer and if there is an extra		
	occurrence of reflection than there is a void within the wafer. This method is good as		
	it is accurate and is a non contact way of finding foids. It can test thousands of voids		
	at once and find abunch of reflections. They compared this method with IR		
	transmission imagery(IRSCIN) and tested It on wafer bonding with natural voids.		
	They compared these two stratageis the newer strategy of (IRSCIN) and the original		
	(IR) strategy and compared the dat they collected against (SAM) Scanning acoustic		
	microscopy. The method they made of IRSCIN was more accurate whilst also not		
	making physical contact with the thing you want to find voids in.		
	Notes		
	• (IRSCIN)>(IR)		
	• Voids can lead to issues within the product and need to be found to fix		
	manufacturing		
	• (IRSCIN) and (IR) are really good for stuff like semi conductors due to it not		
	needing to touch it		
Research	Finding a more accurate way to find voids within wafer bonding without physical		
Question/Proble	contact.		
m/ Need			
Important			
Figures	IRISCN IR Transmission SAM		

Article #4 Notes: Measurements of a Semiconductor Waveguide Using a Low-Coherence Interferometric Reflectometer

Source Title	IEEE
Source citation (APA	Kasaya, K., Yoshikuni, Y., & Ishii, H. (1996). Measurements of a
Format)	semiconductor waveguide using a low-coherence interferometric

	reflectometer. IEEE Photonics Technology Letters, 8(2), 251–253. IEEE
	Photonics Technology Letters. https://doi.org/10.1109/68.484257
Original URL	https://ieeexplore.ieee.org/document/484257
Source type	Journal Article
Keywords	
#Tags	
Summary of key points	so basically this article was attempting to measure the lost wave guides
+ notes (include	within a semiconductor. They did this by using a Low-Coherence
methodology)	Interferometric Reflectometer. There is an older method to do this but when
	attempting to do this older method when you have short tunnels within the
	semiconductor it's usually going to make your answers a lot more skewed. So
	they measured 2,4, and 6 mm waveguides to see if using LCI would be a
	more effective method of for the shorter paths. The way it measured it is by
	shooting light through the semiconductor and seeing how much reflects back.
	So based off how much reflects back we will be able to measure the amount
	of waveguide lost during the experiment. The results said that the method
	was extremely accurate even more accurate than the old method.
Research	Try to find a strategy to measure waveguides in semiconductors for short
Question/Problem/	passage ways accurately.
Need	

Last Name 14

Last Name 15

Last Name 16

Article #5 Notes: On the Relationship between Semiconductor Manufacturing Volume, Yield, and Reliability

Article notes should be on separate sheets

KEEP THIS BLANK AND USE AS A TEMPLATE

Source Title	
Source citation	Siddiqui, J., Ortega, J., & Albus, B. (2017). On the relationship between semiconductor
(APA Format)	manufacturing volume, yield, and reliability. 2017 IEEE International Reliability Physics
	Symposium (IRPS), SR-1.1-SR-1.5. <u>https://doi.org/10.1109/IRPS.2017.7936409</u>

Original URL	https://ieeexplore.ieee.org/abstract/document/7936409?casa_token=9HwgoVmRGG8/	
	AAAA:8k4FcXsI_b-	
	dkwPC1nOfYjphpwAeH1b3GAIaOdfmNSDU5IG4e7tUEyNJo6MNV33-sAE8bRA	
Source type	Conference Paper	
Keywords	Keywords-Reliability, Extrinsic, Intrinsic, Early Life, Wear Out, Yield, Low- and High-	
	volume manufacturing, Yield learning, Defect reduction, Screening, Defect conversion	
#Tags		
Summary of	this article is talking about whether high volume manufacturing or low volume	
key points +	manufacturing is better for the manufacturing process of semiconductors. The	
notes (include	difference between them is 1 is the manufacturing of a lot of semiconductors once	
methodology)	versus a much smaller amount. It almost felt like there was this misconception at first	
	that though high volume manufacture would be better due to the fact that manufacturers	
	more. This is not always the truth throughout the data we see how the yield for the low	
	volume manufacturing actually has an almost better results. And one of the graphs we	
	can see that when these semiconductors are most likely to fail it is right after you got	
	them as if there's an error within them that's when you'll see it or a couple years after as	
	there is a flaw in semiconductors called electromigration. This is basically the wires just	
	burning out almost from overuse over a lot of years as they can only do so much	
	throughout their whole lifespan. So we see almost uh bathtub distribution of when	
	they're going to fail.	
Research	high volume manufacturing versus low volume manufacturing and semiconductor	
Question/Prob	production.	
em/ Need		
Figures	$ \begin{array}{c} \hline \\ \hline $	
	9 2.00	
	Defect Size Ty 3 Mandandrug datas Assurementins (a) Tiglical datasty is size of blacker datastic in the datasty (strategy datasty is size of datastic datasty (strategy datasty is size of datastic datasty (strategy datasty is size) datastic datasty (strategy d	
VOCAB:	HVM: High volume manufacturing a process witch a lot of semiconductors are	
(w/definition)	manufactured	

	LVM: low volume manufacturing a process where less semiconductors are manufactree
	Early life failure: a failure of a semiconductor early on usually caused by cracks or voids
	Wear out failure: failure of a semi conductor usually caused by over use over a long
	period of time
Cited	
references to	
follow up on	
Follow up	is there an actual step within the manufacturing process that can be attributed to a lot
Questions	of these failures?
	Why is LVM and HVM different they're all the same process I feel like they should have
	the same results why would the amount that are being put out affect that product.
	Is there a way to predict early life failures and also is there a way to extend its life so
	that it can be good enough quality for something like military computer chips.

Article #6 Notes: Intercomparison of Methods for Detecting and Characterizing Voids in Bonded Wafer Pairs

Source Title	The Electrochemical Society		
Source citation	Allen, R. A., Rudack, A., Read, D., & Baylies, W. (2010). Intercomparison of Methods		
(APA Format)	for Detecting and Characterizing Voids in Bonded Wafer Pairs. ECS Transactions,		
	33(4), 581. <u>https://doi.org/10.1149/1.3483550</u>		
Original URL	https://iopscience.iop.org/article/10.1149/1.3483550/meta?casa_token=		
Source type	Journal Article		
Keywords			
#Tags			
Summary of key	This article talked about finding the most effective ay to measure voids. It started off		
points + notes	with an overview on how semi conductors are constructed and their different uses		
(include	based off how they were constructed. Than the experiment this project did to find the		
methodology)	most effective way of measuring voids was that they programmed voids into some		
	semiconductor and than sent out these semi conductors to some labs with various		
	equipment to measure voids. For example X ray topography, Ir coherence		
	infetronomy, Sam, Full wafer infrared illumination, MBIR or model based infrared		
	reflectometry, Infrared coradical microscope, Resonance ultra vibrations technology.		
	Than the article gave a brief description on how each one of these technologies work.		
	Than in the conclusion they got no results, although they talked about their testing		
	method their was never any results to the test just a processes to investigate witch		
	technologies for measuring voids within semi conductors is the best		
Research	What is the best method within metrology witch can be used to find voids within wafer		
Question/Proble	bonded material?		
m/ Need			

Last Name 21

Cited references	
to follow up on	
Follow up	What ended up being the resuls as the most accurate method?
Questions	Where can I find the data they found?
	Did they take into account other factors like being able to identify size and shape
	correctly in their raiting.

Article #7 Notes: Failure Analysis of IMC Cracking and Voiding Induced by Molding Compound Voids in Advanced Wire Bonding Packages

KEEP	THIS BLANK	AND USE A	AS A TEMP	LATE
Titlo	IEEE			

Source Title	IEEE
Source citation (APA	Kuo, YL., Lin, YC., Lin, YT., Huan, HS., & Su, D. (2004). Failure analysis of
Format)	IMC cracking and voiding induced by molding compound voids in advanced wire
	bonding packages. Proceedings of the 11th International Symposium on the
	Physical and Failure Analysis of Integrated Circuits. IPFA 2004 (IEEE Cat.
	No.04TH8743), 221–224. https://doi.org/10.1109/IPFA.2004.1345603
Original URL	https://ieeexplore.ieee.org/abstract/document/1345603?
Source type	Conference Paper
Keywords	
#Tags	
Summary of key	article is about finding voids and cracks within computer trips. So basically what
points + notes	they're doing is they're using a punch of technologies to they're using X-ray TCR
(include	Sam. Then once they use sticking out find voids which are the little air pockets
methodology)	that are stuck within there period if a void is above 100 micrometers it's going to
	cause a clack period due to the lact of that you is hear a bond ball. They also
	is at some point in the manufacturing process or the pocking process there's a
	is at some point in the manufacturing process of the packing process there's a
	Void within the semiconductor that is hear the bond ball and in the comes over
	it'll be completely broken. They decided to take the information that they got from
	vravs and compare it to if the computer chipped failed to see the correlation
	between them and find the failure data and he able to analyze if it's going to fail
	based off the information the X-ray produces
Research	analyzing how to find problems within the bond balls of the computer chips and
Question/Problem/	find the voids and cracks and the relationship to failure
Nood	
neca	

Article #8 Notes: Encapsulation Challenges for Wafer Level Packaging	
Article notes should be on separate sheets	

What were the benefits of their strategy compared to others like IR?

Source Title	IEEE
Source citation (APA	Th, E. K., Hao, J. Y., Ding, J. P., Li, Q. F., Chan, W. L., Ho, S. C., Huang, H.
Format)	M., & Jiang, Y. J. (2009). Encapsulation challenges for wafer level packaging.
	2009 11th Electronics Packaging Technology Conference, 903–908.
	https://doi.org/10.1109/EPTC.2009.5416414
Original URL	https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5416414&casa_token=
	2m9Fli3vxxsAAAAA:jdl75XDxP8Wh0KyamBHv1DQrhDTsjHzVgOKja-
	KkwO1OLV2Y-vQNOCIC6kOjowUFvEZoU
Source type	Conference Paper
Keywords	Key words: WLP (Wafer Level Package), Wafer Level Molding (WLM), Die Shift
	(DS), Warpage, Mold Bleed Flashing (MBF), Co-planarity, Voiding, Tape crinkle
	Incomplete Filling, PEMs (plastic encapsulated microelectronics)
#Tags	
Summary of key	this article is mainly about the pros and cons of WLP or water I level package
points + notes	which is this type of technology used in semiconductors. It allows for the
(include	semiconductor manufacturing with the packaged before the semiconductor is
methodology)	cut. The pros to this method is that the Z or height is a lot smaller, higher I / o
	density there will be a better performance by the semiconductor and the heat
	distribution is going to be better on the semiconductor and lastly it's going to be
	a lot more cost effective in the actual production costs as there's going to be a
	lot less wasted material throughout the production process. There is a problem
	with this though and that is that this technology is a little bit secretive. A lot of
	the know how of this technology is only known by the largest companies who
	have already been able to do this since they're so large and rich. This article
	went into a lot of detail on the problems that they had to fix and some that they
	couldn't and there's a lot of companies were doing this a lot added a lot more of
	an advanced level.
Research	What are the challenges that come from usoing WLP and what are the pros
Question/Problem/	and cons?
Need	

Last Name 26

Article #9 Notes: Infrared Microscopy for Overlay and Defect Metrology on 3D-Interconnect Bonded Wafers

KEEP THIS BL	ANK AND USE AS A TEMPLATE
Source Title	Infrared Microscopy for Overlay and Defect Metrology on 3D-Interconnect
	Bonded Wafers
Source citation (APA	Rudack, A. C., Kong, L. W., & Baker, G. G. (2010). Infrared microscopy for
Format)	overlay and defect metrology on 3D-interconnect bonded wafers. 2010
	IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 347-
	352. https://doi.org/10.1109/ASMC.2010.5551481
Original URL	https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5551481&casa_token=o
	cb8MH270nAAAAAA:vXZ0DLKFP495BC17fhqSgtqju_I92Bj9arpFaChLBCIV5P7
	YgOfb0j2qT9Fj64CFBu5v_Uw
Source type	Conference Paper
Keywords	
#Tags	
Summary of key	in this article they again used IR to measure the effectiveness of the wafer
points + notes	bonding period this time instead of just looking for voids they also looked at how
(include	symmetrical the pieces were put on top of each other to make sure that they
methodology)	were in order while also looking for defects like voids. So what they did was they
	attempted to see if there is a correlation between how well aligned it was and
	the amount of defects to the yield. They found that if it's more than 2.5
	micrometers off that there could be an electrical failure so you need it to be
	really well aligned for it to be a successful wafer bonding and for the computer
	chip to be able to be as ideal as possible. They also found that the voids can be
	changed throughout the whole process of phrases bonding. All in all using IR is
	a very good method of looking at wafer bonding.
Research	How can IR be used to measure alignment and defects of wafer bonding.
Question/Problem/	
Need	

Cited references to	
follow up on	
Follow up Questions	How exactly do they change the voids?
	Why does the allighnment make an affect on its affection?
	What are the challenges of finding defects within ir metrology?

Patent #1 Notes: SYSTEM-ON-A-CHIP WITH MULTI-LAYERED METALLIZED THROUGH-HOLE INTERCONNECTION Article notes should be on separate sheets

Source Title SYSTEM-ON-A-CHIP WITH MULTI-LAYERED METALLIZED THROUGH-HOLE INTERCONNECTION Source T. Mimura, C. Christensen, Ahn et al. (2004). System-on-a-chip with multi-layered citation metallized through-hole interconnection. Patent Application No. 10/784,233. (APA) https://www.uspto.gov/patent/ Format) Original https://patents.google.com/patent/US7294921B2/en?g=(Semiconductor+manufacturing)& URL og=Semiconductor+manufacturing&page=4 Source type Patent Keywords #Tags Summary of homeward bound so basically this pattern was about trying to mass produce a SoC. This key points + is like a computer chip that is a Jack of all trades as it does basically everything that it notes should do. The problem with this is because of the so many processes going into creating (include this chip which leads it to being extremely inefficient as all those processes aren't very methodolog efficient to do together as there could be a multitude of issues. So this patent is basically patenting manufacturing strategy which they believe will be a better way to make a SoC. y) This invention basically has a couple things First off there's multi layered metalization as this technology uses multiple layers of wiring and insulations basically within the chip carrier to basically make it more efficient electrically it also has a short wiring paths so that it has the least amount of distance that the signals have to travel and also the controlled low empdancewiring ensures stable power. Research developing a SoC in the most efficient manufacturing process possible. Question/Pr oblem/ Need

What is the benefit of actually making an SoC if the manufacturing process is going to be
worse instead of just making separate parts.

Patent #2 Notes: Method for manufacturing semiconductor device

Source Title	Method for manufacturing semiconductor device	
Source citation	Takahashi, A., & Ishida, Y. (2004). Method for manufacturing semiconductor device (Japan	
(APA Format)	Patent Office Patent).	
	https://patents.google.com/patent/JP2004311603A/en?oq=JP2004311603A.pdf	
Original URL	https://patents.google.com/patent/JP2004311603A/en?oq=JP2004311603A.pdf	
Source type	Patent	
Keywords	Doping Defect p-type doping n-type doping	
#Tags		
Summary of key	There is a problem basically, thin wafer's cannot be pasted ontop of a dicing sheet.	
points + notes	The reason for this is normal adghesive that is seen within these semi conductors	
(include	hardens causing it to be unable to be pasted onto the dicing sheet. The method	
methodology)	bascall added a thin layer ontop and put it at its melting point. So doing this lead to it	
	being a able to go again t the current problem succsefully.So basically this article	
	talks about a problem in the semi conductor manufacturing problem caused by	
	adhesive and to solve this issue that can add a layer boil it and the adhesive will still	
	allow the wafer to be put to the dicing sheet without messing up the waer withi the	
	process.	
Research	Is their a way in the manufacturing process to maike it so wafer bonding will be able	
Question/Proble to be diced by sheet.		
m/ Need		

Last Name 35

Article #11 Notes: Defects in Semiconductors: Some Fatal, Some Vital

Article notes should be on separate sheets

KEEP THIS BLANK AND USE AS A TEMPLATE

Source Title	Defects in Semiconductors:Some Fatal, Some Vital
Source citation (APA Format)	Defects in Semiconductors: Some Fatal, Some Vital. (n.d.). https://doi.org/10.1126/science.281.5379.945
Original URL	https://www.science.org/doi/epdf/10.1126/science.281.5379.945
Source type	Journal entry
Keywords	Doping: The process of introducing impurtoes too a semiconductor to allow for the flow of electricty to change Defect: Impurties in the sehymiconductor crystal structure that influence electrical flow p-type doping: adding impurities that create holes (positive charge) n-type doping: adding impurities that contribute free electrons (negative charge)
#Tags	
Summary of key points + notes (include methodology)	This article is about the change of semiconductors doping overtime and newer more advanced doping strategies and the miniaturization and defect control techniques of semiconductors. They talk about the use techniques of ion implantation and thermal annealing and the challenges of achieving an efficient p- type in some materials like GaN. Then it talks about the effects of dislocation on device performance and the effect it has on carrier lifetime. Than it talks about defect mitigation methods like gattering and passivation. Than we began too see some great results from new materials like dislocated GaN enabling blue light diodes and lasers. Than we began to delve back into advanced techniques in controlling defects in Si and Ge semiconductors by using lithium and hydrogen passively. This article the looks at isotompic composition and the development of emtal semiconductor interfaces and metastble defectles Dx cenyrt and EL@ defect are covers. The defects seen before influence the optoelectronic properties in group III-V semiconductor. Now we just conclude by talking about the change in doping overtime and the advancement going on in the field.

Last Name 37

Last Name 38

Article #12 Notes: Automatic classification of C-Sam Voids for Root cause Identification of Bonding Yield Degradation

Source Title	Automatic Classification of C-SAM Voids for Root Cause Identification of Bonding Yield Degradation
Source citation (APA Format)	Baderot, J., Garrais, S., Martinez, S., Foucher, J., Eto, R., Tanida, K., Yasui, T., & Tanaka, T. (2023). Automatic Classification of C-SAM Voids for Root Cause

	Identification of Bonding Yield Degradation. <i>IEEE Transactions on Semiconducto</i> <i>Manufacturing</i> , 36(4), 537–542. IEEE Transactions on Semiconductor Manufacturing. <u>https://doi.org/10.1109/TSM.2023.3281135</u>	or
Original URL	Automatic Classification of C-SAM Voids for Root Cause Identification of Bondin Yield Degradation IEEE Journals & Magazine IEEE Xplore	ng
Source type	Journal Article	
Keywords	C-Sam,	
#Tags		
Summary of key points + notes (include methodology)	Within this article we see the use of c-sam too basically scan for voids and fid where all the voids are automatically by adding an alagaromthimo ontop of already using c sam within thew semionductor. Now that they can use an algorithm the computer can process faster if the void is fatal or not compared i comparebal methods like ai data sets and such. C sam is different than normal as it is constant depth mode measuring looking for voids at the same deopth theoufh the whole thing. The algorithms classify voids based on shape and size and are similar to my project idea. With this detection they were able to increas the semiconudtor yeild. They proposed qualty metric status to see what size ar lengths had value within the algorithm to classify the semiconductor based on void. This has major industry effects and can be used across the semiconductor industry within the future	to sam ise nd the r
Research Question/Problem/ Need		

Last Name 42

	Defect Type				
Measurement	Scratch	Edge	Delamination	Geometric	
Area/CalcArea	х	Х	Х	X	
Arc Length	Х	х			
Max Width	X	X	Х		
Centroid			Х	X	
Length			X	X	
Geometric				X	
				81	

	Last Name 45	
	a) b) b) b) c) c) c) c) c) c) c) c) c) c	
	Fig. 1. Examples of scratch (a), detamination (b) and edge (c) defect.	
	Fig. 2. Examples of defects and their classification. Random in green (a)(b), note in red (a) and small in orange (a)(b)(c)	
	pattern in orde (a)(b), noise in red (a) and sman in orange (a)(b)(c).	
VOCAB: (w/definition)	C-SAM: A non destructive imaging technique that use high frequency sound waves too inspect internal structure of a material at a set depth (Scanning Acoustic Microscopy)	
Cited references to follow up on		
Follow up Questions	Why did they decide to use C-sam for this project instead of something like IR? I wanna try to find their algorithim too compare to my own? Their data could be usefull too look at.	Commented [12]: Questions are crucial in leading you towards the next paper. This is a MANDATORY section and should include AT LEAST 3 Questions that stem from reading the paper.

Article #13 Notes: Impact of Bonding Layer Voids Distribution Uniformity on the Thermal Performance of Light-Emitting Diode

Source Title	Impact of Bonding Layer Voids Distribution Uniformity on the Thermal Performance of Light-Emitting Diode	
Source citation (APA Format)	Yu, B., Liu, H., Yuan, Y., Li, J., Guo, J., Ding, X., & Li, ZT. (2024). Impact of Bonding Layer Voids Distribution Uniformity on the Thermal Performance of Light-Emitting Diode. <i>IEEE Transactions on Electron Devices</i> , <i>71</i> (3), 1980–1986. IEEE Transactions on Electron Devices. <u>https://doi.org/10.1109/TED.2024.3351109</u>	
Original URL		
Source type	Journal Article	
Keywords		
#Tags		
Summary of key points + notes (include methodology)	This article describes a process for identifying voids/defects in the solder balls between electronic devices and circuit boards using automation. Automation reduces time it takes to scan a board, does a better job detecting voids and not detecting false positives. Solder balls are the conductive material used to connect electronic devices to the circuit board. The voids in the solder balls can cause the electronic devices to not work correctly. Usually voids are detected manually using X-ray. Manual detection of voids is not reliable because of other components and obstacles that can impact the image. Manal detection of voids can miss voids or cause false positives.	
Research Question/Problem/ Need	Automating the use of x-ray too improve semiconduct	

Last Name 48

Cited references to follow up on		
Follow up Questions	Can X-Ray imaging be used to detect other types of defects?	 Commented [13]: Questions are crucial in leading you
	What other imaging technologies can be used to detect voids/defects?	towards the next paper. This is a MANDATORY section and should include AT LEAST 3 Questions that stem from reading the paper.
	What are the most common causes of manufacturing failures?	

Article #14 Notes: Non-Destructive Acoustic Metrology and Void Detection in $3x50\mu m$ TSV

Source Title	Non-Destructive Acoustic Metrology and Void Detection in 3x50µm TSV	
Source citation (APA Format)	Mair, R., Kotelyanskii, M., Mehendale, M., Ru, X., Mukundhan, P., Kryman, T., Liebens, M., Van Huylenbroeck, S., Haensel, L., Miller, A., Beyne, E., & Murray (2016). Non-destructive acoustic metrology and void detection in 3×50µm TS ¹ 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 54–59. <u>https://doi.org/10.1109/ASMC.2016.7491103</u>	
Original URL	https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7491103	
Source type	Journal Article	
Keywords	Through Silicon Vias, Voids Outgassing	
#Tags		
Summary of key points + notes (include methodology)	This article explains how voids in TVS connectors on semiconductors can be found using acoustic metrology. This is important because voids in semiconductor chips can cause them not to work to right. Lasers and soundwaves can find voids in TVS without being destructive to chips and the article explains that lasers and sound waves can find the voids. The laser and sound waves go through the TVS and then they see how the waves bounce. It makes different patterns and then you can see how they are the same and not same and be able to analyze where are the voids. This is a non-destructive method because the laser and sound doesn't hurt the chip but can find the voids. It is a good method also because it can find defects that are really small like 0.4	

Article #14 Notes: Infrared Optical Solutions for Void Inspection of Bonded Wafers

Source Title	Infrared Optical Solutions for Void Inspection of Bonded Wafers		
Source citation (APA Format)	Nádudvari, G., Kiss, Z., Dobos, C., Bodoky, L., Kovács, Z., Molnár, G., Száz, D., Poppa, S., & Balogh, I. (2024). Infrared Optical Solutions for Void Inspection of Bonded Wafers. 2024 IEEE 10th Electronics System-Integration Technology		

	Conference (ESTC), 1–4. <u>https://doi.org/10.1109/ESTC60143.2024.10712076</u>	
Original URL	https://ieeexplore.ieee.org/abstract/document/10712076?casa_token=DWBJY RzUAAAAA:AVhqEHva5GkLniqAUIq25WSSbIMniC9JQGViTirKR6qf9Eo1gycZHim S8QhKwttuyQyk	<u>'YfL</u> XE
Source type	Journal Articlee	
Keywords		
#Tags		
Summary of key points + notes (include methodology)	 This article is about finding new ways of detecting voids in semiconductors usin infrared optical techniques that are available. This is important because voids of lead to device failure. Traditional methods of finding voids have limitations especially when a wafer is thick or there is metal blocking light. Infrared light through the use of Polarized Stress Imaging can look through the silicon wafer find voids and their associated stress fields. By being able to see thorough the silicon with infrared light the authors could find the gaps. They did this in the following ways: One method found voids in general. One method looked to find the stress patterns caused by the defects. One method was a zoom to find miniscule voids. The study had good results and showed that IR was highly effective for detectivity voids and stress. 	ng to
Research Question/Problem/ Need	Find new ways to detet voids in semiconductors	

Last Name 53

Cited references to follow up on		
Follow up Questions	Does the heat from the IR affect the chip? How much expertise does someone need to use these IR methods Can this method differentiate between real and phantom voids?	Commented [15]: Questions are crucial in leading you towards the next paper. This is a MANDATORY section and should include AT LEAST 3 Questions that stem from reading the paper.

Article #15 Notes: Voids, Cracks, and Hot Spots in Die Attach

Source Title). Voids, Cracks, and Hot Spots in Die Attach
Source citation (APA Format)	Carlson, R. O., Yerman, A. J., Burgess, J. F., & Neugebauer, C. A. (1983). Voids, Cracks, and Hot Spots in Die Attach. <i>21st International Reliability Physics</i> <i>Symposium</i> , 138–141. <u>https://doi.org/10.1109/IRPS.1983.361974</u>
Original URL	https://ieeexplore.ieee.org/stamp/stamp.isp?tp=&arnumber=4208495
Source type	Journal Article
Keywords	
#Tags	
Summary of key points + notes (include methodology)	This article basically delve into how defects like voids and cracks and solar layers of semiconductors can affect the performance of the semiconductor, and how reliable that semiconductor will be in the long run. Shoulder layers are crucial for connecting parts of a semiconductor device and for helping it release heat, but voids and cracks in this layer can grow overtime because of the temperature changes when a semiconductor is on leading to problems like over a heating and just making the semiconductor less efficient so the research researchers talk about two types of avoids, cold, voids, and voids cold voids block, both heat and electricity in some spots, making the currents go through the smallest region possible this can lead to the device not heating up correctly and it'll just be less efficient as a Else. It is a hot Theut or a hotspot so they allow electricity to pass but block heat flow this makes it so that all the heat gets together and making super hotspots that can overheat like a specific part of the semiconductor and they're

	especially dangerous because high temperatures are only gonna worsen overt which will lead to device failure and a lot of cases. This article then talks about ways to see that this problem is occurring and how they can minimize it they t about how they can see it using x-ray imaging to detect the voids and solder la and different soldering materials and techniques that could help reduce the formation avoids if we can address these defects and understand them, we ca make semiconductors more reliable.	ime alk yers n	
Research Question/Problem/ Need	Attempt to findout when different failures occur and what voids cause them		
Important Figures			
VOCAB: (w/definition)	Voids: airpokets in semicondter layers Hot spots: a area on a semiconductor is overheatin		
Cited references to follow up on			
Follow up Questions	Why did they decide to lock in on the die part of the semiconductor. How would they actually test the semiconductors. Where can I find their excel sheet?		Commented [16]: Questions are crucial in leading you towards the next paper. This is a MANDATORY section and should include AT LEAST 3 Questions that stem from reading the paper.

Article #16 Notes: Automated Void Detection in Solder Balls in the Presence of Vias and Other Artifacts

Source Title	Automated Void Detection in Solder Balls in the Presence of Vias and Other Artifacts	
Source citation (APA Format)	Said, A. F., Bennett, B. L., Karam, L. J., Siah, A., Goodman, K., & Pettinato, J. S. (2012). Automated Void Detection in Solder Balls in the Presence of Vias and Other Artifacts. <i>IEEE Transactions on Components, Packaging and Manufacturi Technology</i> , <i>2</i> (11), 1890–1901. IEEE Transactions on Components, Packaging a Manufacturing Technology. <u>https://doi.org/10.1109/TCPMT.2011.2182613</u>	<i>ing</i> nd
Original URL	https://ieeexplore.ieee.org/abstract/document/6317150?casa_token=5qeFiwe IAAAAA:sA7os3ilvxLfX0e6WTFLfrqy2rXJ-6mIIZ-iC0k5SiOeU0bnkmS8_X- DZkZGUyq0PB_J_0Q	ovZv

Source type	Journal Article	
Keywords		
#Tags		
Summary of key points + notes (include methodology)	This article is about finding an improved automatic method for finding semiconductor voids with minimal phantom void creation. The article is mostly about finding voids within bonding layer of light-emitting diodes (LEDs) on their ability to dissipate heat effectively. LEDs get hot during operation and can slow performance if it gets too hot and lead to failure. The method in this article calculates a "void distribution uniformity coefficient" to calculate how even the voids are. They found that when voids are even, the bonding layer takes the heat flow better and the LED doesn't get as hot which means they will faill less. The method is done by the following: Identifying solder balls: Each solder ball is located in a way that work even with things that make it hard to find them, like bad lighting. Finding vias: This is important because it can mess up the results. Tracing defects: Edges of defects are traced and the missing outlies get filled in. Remove irrelevant things: The method ignores reflections or things so they don't mess up the result. The testing done by the authors were validated using Xrays. It found that if they could improve void distribution uniformity temeraturs on the chin went down 18% and thermal resistance was 30% bett	
Research Question/Problem/ Need	Is it possible to improve heat resitance to improve failue rate of chips	

	1892 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 2, NO. 11, NOVEMBER 2	2012
	Fig. 2. Solder ball shape in 3-D and the distribution of voids in both 3-D and 2-D images. (a) 3-D image of solder ball. (b) 3-D image cross-section t shows voids inside solder ball. (c) Void distribution in 2-D image.	that
	Fig. 3. Issues related to 2-D X-ray images. (a) Occluded solder balls. (b) Void obscured by via. (c) Via reflection and faded void. (d) Parallax effect.	
VOCAB: (w/definition)	Vias: Tiny conductive naths that are the electrical connections	-
VOCAD. (W/definition)	between different semiconductor layers.	
	Solder ball: A glob of solder that is a defect on a semiconductor PCB board. Therman resistance: How hard it is for heat to flow	
Cited references to follow up on		
Follow up Questions	How can you make sure that voids are uniform since you probably don't	Commented [17]: Questions are crucial in leading you
	want any voids.	towards the next paper. This is a MANDATORY section and should include AT LEAST 3 Questions that stem
	How longs does it take to do this for each chip?	from reading the paper.
	Is this method something a manufacturer could do without special equipment?	

Article #17 Notes: Prediction of Electromigration Induced Voids and Time to Failure for Solder Joint of a Wafer Level Chip Scale Package

Source Title	Prediction of Electromigration Induced Voids and Time to Failure for Solder Join of a Wafer Level Chip Scale Package.	t
Source citation (APA Format)	Liu, Y., Zhang, Y., & Liang, L. (2010). Prediction of Electromigration Induced Void and Time to Failure for Solder Joint of a Wafer Level Chip Scale Package. <i>IEEE</i> <i>Transactions on Components and Packaging Technologies</i> , <i>33</i> (3), 544–552. IEEE Transactions on Components and Packaging Technologies. <u>https://doi.org/10.1109/TCAPT.2010.2042717</u>	S
Original URL	https://ieeexplore.ieee.org/abstract/document/5462959?casa_token=ywg_mFl LwsAAAAA:Ahkoyae8brwQ- RuGZVB_ZDZy1zdA6ezX_IU9pyv8GLtoqv999UXFQVOm-P9WPBoy9F5ZYG0	<u> </u>
Source type	Journal Article	
Keywords		
#Tags		
Summary of key points + notes (include methodology)	This article discusses a new method for predicting when and where voids will happened in solder joints for semiconductor chips. This is needed because voids can cause devices to fail. The soldering on a chip can have its atoms shift after a long period of time due to the electrical current and voids will form. This article uses a model to show how voids happen and incorporates a new way of incorportating things like electrical current and heat over time and their impact. The article explains how the model can predict the exact location and size of voids and can tell how long until failure. They tested their model with different materials and learned that some materials perform better than others. Solder joints made of lead did not work as well as solder joints with non-lead. Their research also showed that the shape can have an impact, too. The idea is that understanding these things can help semiconductor manufacturers design chips with solder joints using proper materials and in the best shapes to reduce void and failures.	
Research Question/Problem/ Need	Can you predict where and when voids will happened in a semiconductor?	

Last Name 62

Cited references to follow up on		
Follow up Questions	What materials are typically used for solder joints?	 Commented [18]: Questions are crucial in leading you
	How much more time to failure does changing the shape or material give you?	towards the next paper. This is a MANDATORY section and should include AT LEAST 3 Questions that stem from reading the paper.
	Can this method help prevent voids from forming at all?	

Article #18 Notes: Experimental measurement and simulation of thermal performance due to aging in power semiconductor devices

Source Title). Experimental measurement and simulation of thermal performance due to aging in power semiconductor devices
Source citation (APA Format)	Katsis, D. C., & van Wyk, J. D. (2002). Experimental measurement and simulation of thermal performance due to aging in power semiconductor devices. <i>Conference</i> <i>Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual</i> <i>Meeting (Cat. No.02CH37344), 3,</i> 1746–1751 vol.3. <u>https://doi.org/10.1109/IAS.2002.1043769</u>
Original URL	
Source type	
Keywords	
#Tags	
Summary of key points + notes (include methodology)	Basically, this article talks about how aging impacts the thermal performance of power, semiconductors and focuses more on void formation in solar, die attach layer. To began to talked about power cycling, causing mechanical stress and semiconductor devices leading to cracks and voids in the solid layers between the silicon and the heat spreader, and these voids reduce the thermal conductivity by this creating hotspots lowering the devices reliability overtime. So what the study was trying to investigate with the relationship between voided area and the diet touch layer and the thermal performance of MOSFETs using experimental

	measurements and 3-D finite elements analysis simulations so how did they do this? The methodology they used is they had devices with different void percentages and analyze them. Thermal independence was measured Throughout the powering cycle to correlate void size with heat performance. Simulations modeled void geometric material properties and transient heat loads and they found out that increasing voids raised thermal temperature that it can take, and this had pretty big implications as aging relative voids and solar can cause critical thermal failures by exceeding safe operating temperatures and designers must account for aging induced thermal effects when developing para semiconductor devices to hands, longevity and reliability as it found that hotspots push peak temperatures deeper into silicon, die, and small disperse voids well get rid of heat more effectively than fewer larger voyage so in conclusion, the study found that the simulation was correct offering an insight into failure due to aging, causing for the semiconductor to overheat		
Research Question/Problem/ Need	How do voids effect the thermal efficiency of a semiconductor.		
Important Figures	$ \begin{array}{c} 3.0 \\ -2.5 \\ 0.0 \\ -2.5$		

Article #19 Notes: Evaluation of Hybrid Bonding Interface Quality by Contact Resistivity Measurement

Source Title	Evaluation of Hybrid Bonding Interface Quality by Contact Resistivity Measurement	
Source citation (APA Format)	Jourdon, J., Lhostis, S., Moreau, S., Bresson, N., Salomé, P., & Frémont, H. (2015 Evaluation of Hybrid Bonding Interface Quality by Contact Resistivity Measurement. <i>IEEE Transactions on Electron Devices, 66</i> (6), 2699–2703. IEEE Transactions on Electron Devices. <u>https://doi.org/10.1109/TED.2019.2910528</u>	9).
Original URL	https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8698310	
Source type		
Keywords		
#Tags		
Summary of key points + notes (include methodology)	This article is about hybrid bonding and how it can be used to tell the quality of connections in a semiconductor chip. The quality is important because the higher the quality the better the performance of the devices. This is because a poor connection gets hotter faster due to increased electrical resistance and this can impact device performance. Hybrid bonding measures how well electrical is flowing a the bonding interface which means that if you know it is bad, you know you will have more voids. If you can find ways to ensure the electrical connections are good, the better off you will be. They used a 3-D Cross Kelvin Resistor to measures how electricity flows across the bonded layers. After a lot of testing, the found that small voids can cause failures over time. The results of their modeling showed that hybrid bonding is a good method for making a stronger bonding interface with better electrical connections and less voids.	
Research Question/Problem/ Need	Weather rimproving the quality of the bonding interphase could reduce chip failure.	

l act	Namo	67
Lasi	iname	01

	Electrical resistance: How much the bonding interface impacts the flow of electricity.	
Cited references to follow up on		
Follow up Questions	 Will making a higher quality bonding interface increase costs to semiconductor manufacturers? Is the 3-D Cross Kelvin Resistor machine used something all manufacturers have already? Is poor quality bonding interfaces common enough to make this process worthwhile? 	Commented [20]: Questions are crucial in leading you towards the next paper. This is a MANDATORY section and should include AT LEAST 3 Questions that stem from reading the paper.

Article #20 Notes: Title

Source Title	Pressure-assisted low-temperature sintering of silver paste as an alternative d attach solution to solder reflow	ie-
Source citation (APA Format)	Zhang, Z., & Lu, GQ. (2002). Pressure-assisted low-temperature sintering of s paste as an alternative die-attach solution to solder reflow. <i>IEEE Transactions on Electronics Packaging Manufacturing</i> , <i>25</i> (4), 279–283. IEEE Transactions on Electronics Packaging Manufacturing. <u>https://doi.org/10.1109/TEPM.2002.807</u>	ilver on 7 <u>719</u>
Original URL	https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1176910	
Source type	JOURNAL ARTICLE	
Keywords		
#Tags		
Summary of key points + notes (include methodology)	This articlal basically talks about a way to attach chips an electronic devices, using like a silver paste instead of traditional sold are and this process is called pressure assisted low temperature, centering, and involves pressing and heating silver paste to create a strong bond between the chip and the base of the chip. This method has a lot of benefits to it compared to the old method of soldering as it's better with heat and it allows for electricity to flow better there is higher	

	durability and the ability to work at much higher temperatures. Traditionally sold metals like lead and 10 to attach chips, but it does still have problems. These materials don't conduct heat or electricity super well so they could develop cracks or voids that we get the bonds between the chip overtime and even lead soldier can cause environmental and health problems while the other hand silver pace is much stronger it can't really get damage that much and it doesn't make voids which approves the reliability of the device and the research is tested the silver pace by applying heat and pressure to the bomb materials. They found that silver bonds were more conductive and they were just stronger and it's better at handling temperatures that were very, very warm than soldier bonds. It also resulted in fewer defects being made in the device. This method could approve the performance at lifespan of electronic devices will be more environmentally friendly.
Research Question/Problem/ Need	Create a eco friendly thermal paste to take solder's job?
Important Figures	Silicon Rubber Pressure Bie-attach layer (Ag) DBC substrate (noble metal surfaces required Pressure for connection)

Last Name 70

