exercise 1:

Let V be a finite-dimensional vector space over \mathbb{R} and A a symmetric operator in $\mathcal{L}(V)$. Let $n = \dim V$ and $\lambda_1 < ... < \lambda_p$ be the ordered eigenvalues of A.

- (i). Show that $\lambda_p = \max_{x \in V, ||x||=1}^{r} \langle Ax, x \rangle$.
- (ii). Show that $\lambda_1 = \min_{x \in V, ||x|| = 1} \langle Ax, x \rangle$.
- (iii). Let $E_p = \text{Ker } (A \lambda_p I)$. Show that $\lambda_{p-1} = \max_{x \in E_p^{\perp}, ||x|| = 1} \langle Ax, x \rangle$.
- (iv). If $\lambda_1 \ge 0$ find $\max_{x \in V, ||x|| = 1} ||Ax||$.

exercise 2:

Find a complex square matrix M such that $M^T = M$ and M is not diagonalizable.

exercise 3:

Let V be a finite-dimensional vector space over \mathbb{C} and A a Hermitian operator in $\mathcal{L}(V)$ such that its eigenvalues are in $[0, \infty)$. Show that the eigenvalues of A are equal to the square roots of the eigenvalues of A^*A .

exercise 4:

Let V be a finite-dimensional inner product space over \mathbb{R} and U a unitary operator in $\mathcal{L}(V)$. Let M be the matrix of U in an orthonormal basis of V.

- (i). Show that M is normal and that any complex eigenvalue λ of M satisfies $|\lambda|=1$.
- (ii). Show that if λ is an eigenvalue of M, then $\overline{\lambda}$ is an eigenvalue of M.
- (iii). Prove that we can find an orthonormal basis of V such that the matrix of U in that basis is block diagonal, with blocks of size 1 containing -1, or 1, and blocks of size 2 in the form $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, for some θ in \mathbb{R} .

Hint: let $\lambda \in \mathbb{C} \setminus \mathbb{R}$ be an eigenvalue of M and v an eigenvector. Use $\frac{1}{\sqrt{2}}(v + \overline{v})$ and $\frac{1}{\sqrt{2}i}(v - \overline{v})$,

exercise 5:

Let $e_1, ..., e_n$ be the natural basis of K^n . Let $a_0, ..., a_{n-1}$ be n scalars in K and M in $K^{n \times n}$ such that $Me_j = e_{j+1}$, if j = 1, ..., n-1 and

$$Me_n = -a_0e_1 - a_1e_2... - a_{n-1}e_n.$$

- (i). Write down the matrix M.
- (ii). Find $M^{j}e_{1}$ for j = 0, ..., n.
- (iii). Prove that the characteristic polynomial of M is $X^n + a_{n-1}X^{n-1} + ... + a_0$. **Hint**: it is insufficient to show that P(M) = 0, since for $Q = (X 2)(X 1)^{n-1}$, $Q(I_n) = 0$.

exercise 6:

Exercise 9.2.2.

exercise 7:

Exercise 9.2.5.