exercise 1:

Let [a, b] be an interval in \mathbb{R} and $x_0 < x_1 < ... < x_n$ be in [a, b]. Let $y_0, ..., y_n$ be in \mathbb{R} . Using Vandermonde determinants show that there is a unique polynomial P in $\mathbb{R}[X]$ with deg $P \le n$ such that $P(x_j) = y_j$, for j = 0, ..., n.

exercise 2:

Let \overline{A} be in $K^{n \times n}$. Assume that A^T is singular. The goal is to prove that A is also singular.

- (i). Let $R_1, ..., R_n$ be the rows of A. Show that there are $a_1, ..., a_n$ that are not all zero and such that $a_1R_1 + ... + a_nR_n = 0$.
- (ii). Infer that the image space of A is included in a hyperplane.
- (iii). Infer that A is singular.

exercise 3:

Let V be a vector space and V_1, V_2 two subspaces such that $V = V_1 \bigoplus V_2$. Assume that $\{e_1, ..., e_m\}$ is a basis of V_1 and that $\{f_1, ..., f_n\}$ is a basis of V_2 . Show that $\{e_1, ..., e_m, f_1, ..., f_n\}$ is a basis of V.

exercise 4:

Let V be a finite dimensional space and \mathcal{B} a basis of V. Let $B: V \times V \to K$ be a bilinear form and M its matrix in \mathcal{B} . Show that B is symmetric if and only if M is symmetric.

exercise 5:

Let V be a finite dimensional space over \mathbb{R} and \mathcal{B} a basis of V. Let $B:V\times V\to\mathbb{R}$ be a bilinear form and M its matrix in \mathcal{B} . Assume that B is symmetric and non-negative, that is, $B(x,x)\geq 0$ for all x in V. Show that B is positive definite if and only if M is invertible. Remark: positive definite means that B(x,x)>0 for all non-null vectors x in V.

exercise 6:

Textbook exercise 5.3.2.

exercise 7:

Textbook exercise 5.5.2.

exercise 8:

Let (V, <, >) be a Euclidean vector space over \mathbb{R} . Let v, w be in V. Show that dim span $\{v, w\} \leq 1$ if and only if $|\langle v, w \rangle| = ||v|| ||w||$.

exercise 9:

Let (V, <, >) be a finite-dimensional inner product space and W a subspace. Let $\{e_1, ..., e_p, ..., e_n\}$ be an orthonormal basis of V such that $\{e_1, ..., e_p\}$ is a basis of W. Show that $\{e_{p+1}, ..., e_n\}$ is a basis of W^{\perp} and infer that $W^{=}W^{\perp\perp}$.

exercise 10:

Let (V, <, >) be a finite-dimensional inner product space. Let W be a subspace of V, and P the orthogonal projection on W.

- (i). Show that Ker P = Im (I P).
- (ii). Show that for all x in V,

$$\inf_{y \in W} ||x - y|| = ||x - Px||.$$

exercise 11:

Let A be in $\mathbb{R}^{m \times n}$ and b in \mathbb{R}^m . Let P be the orthogonal projection in \mathbb{R}^m on Im A.

- (i). Show that the function $f: \mathbb{R}^n \to \mathbb{R}$, f(x) = ||Ax b|| achieves its minimum at some x_0 in \mathbb{R}^n such that $Ax_0 = Pb$.
- (ii). Show that $A^T A x_0 = A^T b$.