## exercise 1:

Let V be a vector space over K. Using the definition of vectors spaces show that for all v in V, (-1)v = -v.

## exercise 2:

Let  $W_1$  and  $W_2$  be subspaces of the vector space V. The set  $W_1 + W_2$  is by definition equal to  $\{u + v : u \in W_1, v \in W_2\}$ .

- (i). Show that  $W_1 \cap W_2$  and  $W_1 + W_2$  are subspaces of V.
- (ii). Show that  $W_1 \cup W_2$  is a subspace if and only if  $W_1 \subset W_2$  or  $W_2 \subset W_1$ .

## exercise 3:

- (i). 1.2.5: c, d, f, h.
- (ii). Let  $a_1, ..., a_n$  be n distinct real numbers and  $f_i(t) = e^{a_i t}$ . Show that the functions  $f_1, ..., f_n$  are independent.

# exercise 4:

Let  $v_1, ..., v_p$  be p independent vectors in a vector space V and w in V such that  $w \notin \text{Span } \{v_1, ..., v_p\}$ . Show that  $\{v_1, ..., v_p, w\}$  is independent.

# exercise 5:

Let  $P_1, ..., P_n$  be n polynomials in K[X] such that  $P_i$  is not the zero polynomial for  $1 \le i \le n$  and if  $1 \le i \ne j \le n$ , deg  $P_i \ne \deg P_j$ . Show that these n polynomials are linearly independent.

#### exercise 6:

Let  $a_0, ..., a_n$  be n+1 distinct scalars in K. Set

$$Q = (X - a_0)...(X - a_n),$$

for  $0 \le i \le n$ ,  $P_i = Q/(X - a_i)$ .

- (i). Show that  $P_0, ..., P_n$  are linearly independent.
- (ii). Let  $K_n[X]$  be the subspace of polynomials with degree less or equal to n. Show that  $P_0, ..., P_n$  is a basis of  $K_n[X]$ .

#### exercise 7:

Let A be in  $K^{m \times n}$  with m < n. Use a result from the first three lectures to show that  $\exists x \neq 0 \in K^n$  such that Ax = 0.

# exercise 8:

Prove or Disprove:

Let  $V_1, V_2, V_3$  be subspaces of a vector space V. If  $V_i \cap V_j = \{0\}$  for  $1 \le i < j \le 3$  then the sum  $V_1 + V_2 + V_3$  is direct.

# exercise 9:

Problem 1.4.4 from the textbook.