Textbook problems

https://openstax.org/books/calculus-volume-3/pages/4-4-tangent-planes-and-linear-approximations https://openstax.org/books/calculus-volume-3/pages/4-7-maxima-minima-problems

exercise 1: 191. Hint: discuss the continuity of partial derivatives near the point of interest.

<u>exercise 2</u>: 192 <u>exercise 3</u>: 195 exercise 4: 344

Textbook problems

https://openstax.org/books/calculus-volume-3/pages/4-5-the-chain-rule

https://openstax.org/books/calculus-volume-3/pages/4-6-directional-derivatives-and-the-gradient exercise 5: 215, 216, 219: in each case first find the differential of the function of several variables and then apply the multidimensional chain rule.

<u>exercise 6</u>: 260, 265 exercise 7: 295, 298

exercise 8:

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that for some n in \mathbb{N} all t in \mathbb{R} , $f(tx, ty) = t^n f(x, y)$. Assume that the differential of f exists for all (x, y) in \mathbb{R}^2 . Show that

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = nf(x,y),$$

for all (x, y) in \mathbb{R}^2 . Hint: take a t derivative then set t = 1.

exercise 9

Let
$$f(x,y) = \exp(\frac{x}{x^2 + y^2})$$
.

- (i). Sketch the vectors e_r , e_θ and write f(x,y) as a function of r and θ .
- (ii). Compute the gradient of f in polar coordinates.

Textbook problems

https://openstax.org/books/calculus-volume-3/pages/4-6-directional-derivatives-and-the-gradient exercise 10: 303, 305

Textbook problems

https://openstax.org/books/calculus-volume-3/pages/4-7-maxima-minima-problems exercise 11: 318, 341