exercise 1:

(i). Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \frac{x+y}{\sqrt{x^2+y^2}}$, if $(x,y) \neq 0$ and f(0,0) = C, where

C is a constant. Is there a constant C such that f is continuous at (0,0)?

(ii). Same question for $g: \mathbb{R}^2 \to \mathbb{R}$ be defined by $g(x,y) = \frac{x^2 + 2y^2}{\sqrt{x^2 + y^2}}$, if $(x,y) \neq 0$ and g(0,0) = C.

From https://openstax.org/books/calculus-volume-3/pages/4-3-partial-derivatives

exercise 2: 117

<u>exercise 3</u>: 119, 122

exercise 4: 128

 $\underline{\text{exercise 5}}$: 130

exercise 6:

- (i). Find with proof, the point of the parabola with equation $y = x^2$ where the curvature is maximal.
- (ii). For any positive number c, is there a point on that parabola where the cutvature is less than c?

More textbook problems

https://openstax.org/books/calculus-volume-3/pages/4-4-tangent-planes-and-linear-approximations https://openstax.org/books/calculus-volume-3/pages/4-7-maxima-minima-problems

<u>exercise 7</u>: 171, 174

exercise 8: 310, 312

exercise 9: 345