exercise 1:

For t > 0, define the parametric curve C by $x(t) = t - \ln t$, $y(t) = t^{\frac{1}{2}} + \cos(\frac{\pi}{2}t)$.

- (i). Find an equation of the tangent line through $P_0 = (1, 1)$.
- (ii). Show that x is a function of y on C near P_0 .

exercise 2:

Let \mathcal{C} be the curve defined by $x = e^t + e^{-t}$, $y = e^t - e^{-t}$, $-1 \le t \le 1$.

- (i). Show that C is a piece of hyperbola and sketch it.
- (ii). Compute $\frac{d^2x}{dy^2}$ as a function of t and infer the concavity of $\mathcal C$.

exercise 3:

Define the parametric curve $x(t) = t^2 + 1, y(t) = t - 1, 1 \le t$.

- (i). Show that it defines a portion of parabola. Sketch that portion.
- (ii). Find an equation of the tangent line at t=1.

exercise 4:

Find the arclength of \mathcal{C} defined in exercise 2. Leave your final answer in integral form.

exercise 5:

The goal of this exercise is to show that the arclength is invariant under rotations.

For the vector $u = (u_1, u_2)$ we define the vector

 $R_{\theta}u = (\cos\theta u_1 - \sin\theta u_2, \sin\theta u_1 + \cos\theta u_2)$. Let $e_1 = (1,0), e_2 = (0,1)$.

- (i). For $\theta = \frac{\pi}{2}$, find and sketch $R_{\theta}e_1$ and $R_{\theta}e_2$.
- (ii). For any two vectors u, v in \mathbb{R}^2 , show that $u \cdot v = R_{\theta}u \cdot R_{\theta}v$.
- (iii). Let \mathcal{C} be the parametric curve defined by (x(t), y(t)), $t \in [a, b]$ where x and y are C^1 functions of t. Let \mathcal{C}_{θ} be the parametric curve defined by $(R_{\theta}x(t), R_{\theta}y(t)), t \in [a, b]$. Show that \mathcal{C} and \mathcal{C}_{θ} have the same arc length.

exercise 6:

- (i). Sketch the parametric curve $x(t) = \cos t$, $y(t) = 2\sin t$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$.
- (ii). Find the arclength of that curve. Leave your answer in integral form.
- (iii). Find the area of the region between that curve and the x-axis.