$\underline{\text{exercise } 1}$:

Let u, v, w be in \mathbb{R}^3 , t be in \mathbb{R} . Using coordinates, prove the identities $(u+v) \cdot w = u \cdot w + v \cdot w$ and $(tu) \cdot v = t(u \cdot v)$.

$\underline{\text{exercise } 2}$:

https://openstax.org/books/calculus-volume-3/pages/2-5-equations-of-lines-and-planes-in-space~243,~247

exercise 3:

251, a.

$\underline{\text{exercise } 4}$:

268

exercise 5:

276. Note that i = (1, 0, 0), j = (0, 1, 0).

$\underline{\text{exercise } 6}$:

277

$\underline{\text{exercise } 7}$:

282