exercise 1:

For what values of α in \mathbb{R} does $\int_{1}^{\infty} \frac{\arctan x}{x^{\alpha}} dx$ converge?

exercise 2:

Show that for any s>0, $\int_0^\infty e^{-x^s}dx$ converges. **Hint**: first show that $\lim_{x\to\infty}x^2e^{-x^s}=0$.

exercise 3:

For what values of p in \mathbb{R} is $\int_0^1 \frac{dx}{x^p}$ convergent?

exercise 4:

Textbook problem 5.1.A: g, h...

Show that
$$\int_0^\infty \frac{\cos tx}{1+x^2} dx$$
 converges for all t in \mathbb{R} .

exercise 6:

- (i). Given that $\ln x \le x 1$ for all x > 0, and that just as in exercise 2, $\lim_{x \to \infty} x^3 e^{-x^s} = 0$ if s>0, show that for any s>0, $\int_{1}^{\infty}e^{-x^{s}}\ln xdx$ converges. (ii). Infer that for any s>0, $\int_{0}^{\infty}e^{-x^{s}}\ln xdx$ converges.