exercise 1:

Let q be in (0,1). Show that the sequence $a_n = n^2 q^n$ is eventually decreasing.

$\underline{\text{exercise } 2}$:

Let
$$a_1 = \frac{3}{2}$$
, $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$.

- (i). Show by induction that $\sqrt{2} \le a_n \le \frac{3}{2}$, for all $n \ge 1$. **Hint**: First verify that the function $f: [\sqrt{2}, \frac{3}{2}] \to \mathbb{R}, f(x) = \frac{x}{2} + \frac{1}{x}$ is increasing.
- (ii). Show by induction that a_n is decreasing.

exercise 3:

Show from the definition of divergence to infinity that the sequence $a_n = n^2$ satisfies $\lim a_n = \infty$.

exercise 4:

If $\overline{a_n}$ is a sequence such that $\lim a_n = \infty$ and b_n is bounded, show that $\lim a_n + b_n = \infty$.

exercise 5:

True or false: if c_n converges to zero and $c_n \neq 0$ for all n then $\frac{1}{c_n}$ diverges to infinity or minus infinity.

exercise 6:

Textbook problem. A.1.1: o, p. For o, first show that na_n is eventually decreasing.

exercise 7:

B.1.9.

exercise 8:

B.1.10.

$$\frac{\text{exercise 9:}}{\text{Find }\lim_{x\to\infty}\frac{x^2+x^2\cos x}{x^3+x\sin x}} \ .$$

exercise 10:

Show that $x \cos x$ has no limit as $x \to \infty$.