exercise 1:

Using the fundamental properties of inequalities on \mathbb{Q} stated in class, show that for all x in \mathbb{Q} , $0 \le x^2$.

$\underline{\text{exercise } 2}$:

Let x_1, x_2, x_3, x_4 be in \mathbb{Q} . Using the fundamental properties of inequalities on \mathbb{Q} stated in class, show that if $x_1 \leq x_2$ and $x_3 \leq x_4$, then $x_1 + x_3 \leq x_2 + x_4$.

exercise 3:

Prove or disprove: if x_1, x_2, x_3, x_4 in \mathbb{Q} satisfy $x_1 \leq x_2$ and $x_3 \leq x_4$, then $x_1x_3 \leq x_2x_4$.

exercise 4:

Using properties of the absolute value function on \mathbb{Q} shown in class, prove that for all x in \mathbb{Q} if $x \neq 0$, $|\frac{1}{x}| = \frac{1}{|x|}$.

exercise 5:

Write the rational number 32.117171717... where the periodic pattern is 17, as a quotient of two integers.