exercise 1:

Let V be a n-dimensional vector space over K.

(i). Let B be in $\mathcal{L}(V)$. Assume that B is diagonalizable and that W is a subspace that is stable under B. Show that the restriction of B to W is diagonalizable.

Let A be in $\mathcal{L}(V)$ such that $P(X) = (X - \lambda_1)^{m_1}...(X - \lambda_p)^{m_p}$ is the minimal polynomial of A, where $\lambda_1, ..., \lambda_p$ are distinct (look up the definition of the minimal polynomial in your textbook). Set $W_j = \text{Ker } (A - \lambda_j I)^{m_j}, j = 1, ..., p$. Suppose that A = D + N where D is diagonalizable, N is nilpotent, and DN = ND.

(ii). Show that W_i is stable under A, D, and N.

Let A_j, D_j, N_j be the restrictions of A, D, and N to W_j .

- (iii). Show that $D_j = \lambda_j I_{W_j}$.
- (iv). Conclude that D and N are unique.

exercise 2:

Let V be a complex vector space such that dim V = n and T in $\mathcal{L}(V)$ be such that Ker $T^{n-1} \neq \text{Ker } T^{n-2}$. Show that T has at most two distinct eigenvalues.

exercise 3:

Let
$$A \in K^{n \times n}$$
 and $||A||_{\infty} = \sup_{x \in K^n, ||x||_{\infty} = 1} ||Ax||_{\infty}$. Show that $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$.

exercise 4:

Let
$$A \in K^{n \times n}$$
. Show that $\sum_{k=0}^{\infty} A^k$ converges if and only if $\rho(A) < 1$.

exercise 5:

Let $A \in K^{n \times n}$ and $\| \|$ a vector derived norm on $K^{n \times n}$.

- (i). Show that $||A^k|| \ge \rho(A)^k$.
- (ii). Fix $\epsilon > 0$. Set $B = (\rho(A) + \epsilon)^{-1}A$. Find $\lim_{k \to \infty} B^k$.
- (iii). Find $\lim_{k\to\infty} ||A^k||^{\frac{1}{k}}$.