exercise 1:

(i). Find a finite dimensional space V and A in $\mathcal{L}(V)$ such that V is not the direct sum of Ker A and Im A.

(ii). Is it possible to find such an example with the additional requirement that Ker $A \cap \text{Im A} = \{0\}$?

$\underline{\text{exercise } 2}$:

Let $V = C^{\infty}(0, 1)$, and T in $\mathcal{L}(V)$ defined by Tf = f'. Find all eigenvalues of T and corresponding eigenvectors.

$\underline{\text{exercise } 3}$:

Let R be a unitary matrix in $\mathbb{R}^{2\times 2}$ such that det R = 1. Show that there is a θ in $[0, 2\pi]$ such that

$$R = \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right).$$

 $\underline{\text{exercise } 4}$:

Let V, W be two finite dimensional Hermitian spaces and A in $\mathcal{L}(V, W)$.

- (i). Show that A and A^* have the same rank.
- (ii). If V = W do A and A^* have the same image?

 $\underline{\text{exercise } 5}$:

Let V be a vector space over \mathbb{C} such that dim V = 2 and T in $\mathcal{L}(V)$. Show that T is nondiagonalizable if and only if the characteristic polynomial of T has only one root and T is not a multiple of the identity.

<u>exercise 6</u>:

Let V be a vector space over \mathbb{R} such that dim V = 2p where p is a positive integer. Show that there is a T in $\mathcal{L}(V)$ such that T has no eigenvalue.

$\underline{\text{exercise } 7}$:

Let V be an n-dimensional vector space over K. Find a T in $\mathcal{L}(V)$ that is not diagonalizable.