$\underline{\text{exercise } 1}$:

Let [a, b] be an interval in \mathbb{R} and $x_0 < x_1 < ... < x_n$ be in [a, b]. Let $y_0, ..., y_n$ be in \mathbb{R} . (i). Use exercise 6 from homework 1 to show that there is a unique polynomial P in $\mathbb{R}[X]$ with deg $P \leq n$ such that $P(x_j) = y_j$, for j = 0, ..., n.

(ii). Show the same result using Vandermonde determinants.

 $\underline{\text{exercise } 2}$:

Let A be in $K^{n \times n}$. Assume that A^T is singular.

(i). Let $R_1, ..., R_n$ be the rows of A. Show that there are $a_1, ..., a_n$ that are not all zero and such that $a_1R_1 + ... + a_nR_n = 0$.

(ii). Infer that the image space of A is included in a hyperplane.

(iii). Infer that A is singular.

$\underline{\text{exercise } 3}$:

Let V be a vector space and V_1, V_2 two subspaces such that $V = V_1 \bigoplus V_2$. Assume that $\{e_1, ..., e_m\}$ is a basis of V_1 and that $\{f_1, ..., f_n\}$ is a basis of V_2 . Show that $\{e_1, ..., e_m, f_1, ..., f_n\}$ is a basis of V.

$\underline{\text{exercise } 4}$:

Let A be in $\mathbb{R}^{n \times n}$ and define $\varphi(x, y) = x^T A y$ for x, y in \mathbb{R}^n .

(i). Show that φ is symmetric if and only if A is symmetric.

(ii). Assume that φ is symmetric and non-negative, that is, $\varphi(x, x) \ge 0$ for all x in \mathbb{R}^n . Show that φ is definite positive if and only if A is invertible.

$\underline{\text{exercise } 5}$:

Let (V, <, >) be a Euclidean vector space over \mathbb{R} . Let v, w be in V. Show that dim span $\{v, w\} \leq 1$ if and only if $|\langle v, w \rangle| = ||v|| ||w||$.

 $\underline{\text{exercise } 6}$:

Let (V, <, >) be a finite-dimensional inner product space and W a subspace. Let $\{e_1, ..., e_p, ..., e_n\}$ be an orthonormal basis of V such that $\{e_1, ..., e_p\}$ is a basis of W. Show that $\{e_{p+1}, ..., e_n\}$ is a basis of W^{\perp} and infer that $W^=W^{\perp \perp}$.

 $\underline{\text{exercise } 7}$:

Let (V, <, >) be a finite-dimensional inner product space.Let W be a subspace of V, and P the orthogonal projection on W.

(i). Show that Ker P = Im (I - P).

(ii). Show that for all x in V,

$$\inf_{y \in W} \|x - y\| = \|x - Px\|.$$

<u>exercise 8</u>: Textbook exercise 5.3.2.

<u>exercise 9</u>: Textbook exercise 5.5.2.