$\underline{\text{exercise } 1}$:

Let V, W be two vector spaces and S in $\mathcal{L}(V, W)$. Let V_1 be a subspace of V and W_1 be a subspace of W. Show that $S(V_1)$ is a subspace of W and that $S^{-1}(W_1)$ is a subspace of V.

$\underline{\text{exercise } 2}$:

Let U, V, W be three vector spaces. Assume that U, V are finite dimensional. Let S in $\mathcal{L}(V, W), T$ in $\mathcal{L}(U, V)$. Show that

 $\dim \operatorname{Ker} ST \leq \dim \operatorname{Ker} S + \dim \operatorname{Ker} T.$

 $\underline{\text{exercise } 3}$:

To answer the following questions, you may want to use polynomials.

(i). Find a vector space V and $T \in \mathcal{L}(V)$ such that T is injective but T is not surjective.

(ii). Find a vector space V and $S \in \mathcal{L}(V)$ such that S is surjective but S is not injective.

 $\underline{\text{exercise } 4}$:

Look up the definition of the trace then solve 2.3.27. Suggestion: Introduce C = AB and D = BA. Write the *i*, *j* entries of *C* and of *D* using the entries of *A* and *B*.

<u>exercise 5</u>: 2.3.35. Suggestion: prove by induction on k that $A^k e_j = 0$ for all j = 1, ..., k.

exercise 6: If V, W are finite-dimensional spaces over K, show that

$$\dim \mathcal{L}(V, W) = \dim V \quad \dim W,$$

by finding an explicit basis for $\mathcal{L}(V, W)$ from bases of V and W.

 $\underline{\text{exercise } 7}$:

Let V be a finite-dimensional space. Show that the subspace H is a hyperplane if and only if it is the kernel of a non-zero element in V'.

 $\underline{\text{exercise } 8}$:

Let A be in $K^{n \times n}$ such that for all B be in $K^{n \times n}$, AB = BA. Show that A is a multiple of the identity matrix. **Hint:** In a first step use the basis matrices E_{ij} to show that A is diagonal. Alternatively, you may use elementary matrices.