$\underline{\text{exercise } 1}$:

Let V be a vector space over K. Using the definition of vectors spaces show that for all v in V, (-1)v = -v.

$\underline{\text{exercise } 2}$:

Let W_1 and W_2 be subspaces of the vector space V. The set $W_1 + W_2$ is by definition equal to $\{u + v : u \in W_1, v \in W_2\}$.

- (i). Show that $W_1 \cap W_2$ and $W_1 + W_2$ are subspaces of V.
- (ii). Show that $W_1 \cup W_2$ is a subspace if and only if $W_1 \subset W_2$ or $W_2 \subset W_1$.

<u>exercise 3</u>:

(i). 1.2.5: c, d, f, h.

(ii). Let $a_1, ..., a_n$ be *n* distinct real numbers and $f_i(t) = e^{a_i t}$. Show that the functions $f_1, ..., f_n$ are independent.

$\underline{\text{exercise } 4}$:

Let $P_1, ..., P_n$ be *n* polynomials in K[X] such that P_i is not the zero polynomial for $1 \le i \le n$ and if $1 \le i \ne j \le n$, deg $P_i \ne \deg P_j$. Show that these *n* polynomials are linearly independent.

$\underline{\text{exercise } 5}$:

Let $v_1, ..., v_p$ be p independent vectors in a vector space V and w in V such that $w \notin \text{Span } \{v_1, ..., v_p\}$. Show that $\{v_1, ..., v_p, w\}$ is independent.

<u>exercise 6</u>: Let $a_0, ..., a_n$ be n + 1 distinct scalars in K. Set

$$Q = (X - a_0)...(X - a_n),$$

for $0 \le i \le n$, $P_i = Q/(X - a_i)$.

(i). Show that $P_0, ..., P_n$ are linearly independent.

(ii). Let $K_n[X]$ be the subspace of polynomials with degree less or equal to n. Show that $P_0, ..., P_n$ is a basis of $K_n[X]$.

$\underline{\text{exercise } 7}$:

Let A be in $K^{m \times n}$ with m < n. Use a result from the first two lectures to show that $\exists x \neq 0 \in K^n$ such that Ax = 0.

 $\underline{\text{exercise } 8}$:

True or False:

Let V_1, V_2, V_3 be subspaces of a vector space V. If $V_i \cap V_j = \{0\}$ for $1 \le i < j \le 3$ then the sum $V_1 + V_2 + V_3$ is direct.

 $\underline{\text{exercise } 9}$:

True or false: there is a dimension $n \ge 2$ such that if A in $K^{n \times n}$ has only zeros on its diagonal, then A is singular.