<u>exercise 1</u>: Exercise 5.5.

$\underline{\text{exercise } 2}$:

Exercise 5.6: integrate the constant 1 to find the area of this region.

$\underline{\text{exercise } 3}$:

Consider the rose petal with equation in polar coordinates $r = 2 \cos 2\theta$. Compute the area of a half petal. Hint: you just need to consider the range $0 \le \theta \le \frac{\pi}{4}$.

$\underline{\text{exercise } 4}$:

Find the volume of the solid in space bounded by the surfaces with equation $z = x^2, y = x^2, y = 1$ and the xy plane.

$\underline{\text{exercise } 5}$:

Let R be the region in \mathbb{R}^2 bounded by the hyperbolas with equation $y = \frac{1}{x}$ and $y = \frac{2}{x}$ and the lines with equation y = 1 and y = 2. Define the mass density m(x, y) = 4(x + y) on R. Find the center of mass of R.

<u>exercise 6</u>: Integrate x(z+1) over the region in space defined by $1 \le x \le \sqrt{5}$, $x^2 - y^2 \ge 1$, $1 \le z \le 3$.

exercise 7: Integrate $e^{z+\sqrt{x^2+y^2}}$ over the region in space defined by $1 \le x^2+y^2 \le 4$, $y \le 0$, $x \le \sqrt{3}y$, $2 \le z \le 3$.