exercise 1: Set f(x, y) = xe^y.
(i). Find the differential at f at (x, y).
(ii). Approximate f(1.05, 2.1) using the linear approximation to f at (1, 2).

exercise 2: Given $w = 4x + y^2 + z^3$, $x = e^{rs^2}$, $y = \ln \frac{r+s}{t}$, $z = rst^2$, use the multivariate chain rule to find $\frac{\partial w}{\partial t}$.

 $\underline{\text{exercise } 3}$:

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that for some n in \mathbb{N} all t in \mathbb{R} , $f(tx, ty) = t^n f(x, y)$. Assume that the differential of f exists for all (x, y) in \mathbb{R}^2 . Show that

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = nf(x,y),$$

for all (x, y) in \mathbb{R}^2 . Hint: take a t derivative then set t = 1.

<u>exercise 4</u>: Exercise 3.13.

<u>exercise 5</u>: Exercise 4.2.

<u>exercise 6</u>: Exercise 4.10.

 $\underline{\text{exercise } 7}$:

The following curves are given using equations in polar coordinates. In each case, indicate what this curve is.

(i). r = 2. (ii). $\theta = \alpha$. (iii). $r = \frac{\sin \theta}{\cos^2 \theta}$, where $0 < \theta < \frac{\pi}{2}$.

 $\begin{array}{l} \underline{\text{exercise 8}}:\\ \text{Let } f(x,y) = \exp(\frac{x}{x^2+y^2}). \end{array}$

- (i). Sketch the vectors e_r, e_{θ} and write f(x, y) as a function of r and θ . (ii). Compute the gradient of f in polar coordinates.