$\frac{\text{exercise } 1}{2.2.A: a, b, d.}$

 $\frac{\text{exercise } 2}{2.6.\text{A}}$

 $\underline{\text{exercise } 3}$:

For t > 0, define the parametric curve C by $x(t) = t - \ln t$, $y(t) = t^{\frac{1}{2}} + \cos(\frac{\pi}{2}t)$.

(i). Find an equation of the tangent line through $P_0 = (1, 1)$.

(ii). Show that x is a function of y on C near P_0 .

 $\underline{\text{exercise } 4}$:

Let C be the curve defined by $x = e^t + e^{-t}$, $y = e^t - e^{-t}$, $-1 \le t \le 1$.

- (i). Show that ${\mathcal C}$ is a piece of hyperbola and sketch it.
- (ii). Compute $\frac{d^2x}{du^2}$ as a function of t and infer the concavity of C.

 $\underline{\text{exercise } 5}$:

Find the arclength of \mathcal{C} defined in exercise 4. Leave your final answer in integral form.

 $\underline{\text{exercise } 6}$:

Compute the curvature radius at each point of the parabola with equation $y = x^2$. Does this radius achieve a minimum value or a maximum value?

 $\underline{\text{exercise } 7}$:

For the vector $u = (u_1, u_2)$ we define the vector $R_{\theta}u = (\cos \theta \, u_1 - \sin \theta \, u_2, \sin \theta \, u_1 + \cos \theta \, u_2)$. Let $e_1 = (1, 0), e_2 = (0, 1)$. (i). For $\theta = \frac{\pi}{2}$, find and sketch $R_{\theta}e_1$ and $R_{\theta}e_2$. (ii). For any two vectors u, v in \mathbb{R}^2 , show that $u \cdot v = R_{\theta}u \cdot R_{\theta}v$. (iii). Let \mathcal{C} be the parametric curve defined by $(x(t), y(t)), t \in [a, b]$ where x and y are C^1 functions of t. Let \mathcal{C} be the parametric curve defined by $(R_{\theta}x(t), R_{\theta}u(t)), t \in [a, b]$ where x and y are C^1

functions of t. Let C_{θ} be the parametric curve defined by $(R_{\theta}x(t), R_{\theta}y(t)), t \in [a, b]$. Show that C and C_{θ} have the same arc length.