exercise 1:

Let V be a finite-dimensional vector space over \mathbb{R} and A a symmetric operator in $\mathcal{L}(V)$. Let $n = \dim V$ and $\lambda_1 < ... < \lambda_p$ be the ordered eigenvalues of A.

- (i). Show that $\lambda_p = \max_{x \in V, ||x||=1} \langle Ax, x \rangle$.
- (ii). Show that $\lambda_1 = \min_{x \in V, ||x||=1} \langle Ax, x \rangle$.

(iii). Let $E_p = \text{Ker} (A - \lambda_p I)$. Show that $\lambda_{p-1} = \max_{x \in E_p^{\perp}, \|x\|=1} \langle Ax, x \rangle$.

(iv). If $\lambda_1 \ge 0$ find $\max_{x \in V, ||x||=1} ||Ax||$.

$\underline{\text{exercise } 2}$:

Find a complex square matrix M such that $M^T = M$ and M is not diagonalizable.

$\underline{\text{exercise } 3}$:

Let V be a finite-dimensional vector space over \mathbb{C} and U a unitary operator in $\mathcal{L}(V)$.

(i). Show that U is normal and that any eigenvalue λ of U satisfies $|\lambda| = 1$.

(ii). Let M be the matrix of U in an orthonormal basis of V. Assume that the entries of M are all real. Let λ be an eigenvalue of U. Show that $\overline{\lambda}$ is an eigenvalue of U.

(iii). Prove theorem 6.4 , section 8.6, from the textbook using complex normal operators as discussed in class.

$\underline{\text{exercise } 4}$:

Let V be a finite-dimensional vector space over \mathbb{C} and A a Hermitian operator in $\mathcal{L}(V)$ such that its eigenvalues are in $[0, \infty)$. Show that the eigenvalues of A are equal to the square roots of the eigenvalues of A^*A .

 $\underline{\text{exercise } 5}$:

Let A be in $\mathbb{R}^{m \times n}$ and b in \mathbb{R}^m . Let P be the orthogonal projection in \mathbb{R}^m on Im A.

(i). Show that the function $f : \mathbb{R}^n \to \mathbb{R}$, f(x) = ||Ax - b|| achieves its minimum at some x_0 in \mathbb{R}^n such that $Ax_0 = Pb$.

(ii). Show that $A^*Ax_0 = A^*b$.