exercise 1:

Let (V, φ) be a vector space over K where φ is bilinear, symmetric, and non-degenerate form. Let A, B be in $\mathcal{L}(V)$ and s be in \mathbb{R} . Show that: (i). $(A+B)^* = A^* + B^*$. (ii). $(sA)^* = sA^*$. (iii). $I^* = I$. (iv). $(AB)^* = B^*A^*$.

$\underline{\text{exercise } 2}$:

Let V be a vector space over \mathbb{R} and $\langle \rangle >$ a positive definite scalar product on V. Let A, B be in $\mathcal{L}(V)$. If A and B are symmetric is AB symmetric?

<u>exercise 3</u>: 5.6.5.

 $\underline{\text{exercise } 4}$:

Let R be a unitary matrix in $\mathbb{R}^{2\times 2}$ such that det R = 1. Show that there is a θ in $[0, 2\pi]$ such that

$$R = \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right).$$

 $\underline{\text{exercise } 5}$:

Let V be a finite-dimensional vector space and P in $\mathcal{L}(V)$. Show that P is a projection if and only if there exists a basis of V where the matrix of P is $I_{r,n}$ for some r in $\{0, ..., n\}$. Here, $I_{r,n}$ is the diagonal matrix with r ones followed by zeros on the diagonal.

<u>exercise 6</u>:

Let (V, <, >) be a finite-dimensional scalar product space where <, > is positive definite. Let W be a subspace of V, and P the orthogonal projection on W (this is equivalent to saying that $P \in \mathcal{L}(V)$, the restriction of P to W is the identity and the the restriction of P to W^{\perp} is zero). Show that for all x in V,

$$\inf_{y \in W} \|x - y\| = \|x - Px\|.$$

exercise 7:

Let (V, <, >) be a finite-dimensional Hermitian space where <, > is positive definite. Let A in $\mathcal{L}(V)$ be a normal operator. Show that Im $A = \text{Im } A^*$.

<u>exercise 8</u>: 7.1.10.

 $\underline{\text{exercise } 9}$:

7.2.7. Additional question: is that still true without the assumption AB = BA?