exercise 1:

Let n be in N and p, q in N greater or equal than 1 such that p + q = n. (i). Define the matrix N in $K^{n \times n}$ by blocks

$$N = \left(\begin{array}{cc} I_p & D\\ 0 & I_q \end{array}\right)$$

Find det N. Now let M be in $K^{n \times n}$

$$M = \left(\begin{array}{cc} A & C \\ 0 & B \end{array}\right),$$

where $A \in K^{p \times p}$, $B \in K^{q \times q}$.

(ii). If A or B is singular, show that $\det M = 0$.

(iii). Show that $\det M = \det A \det B$. **Hint:** Use matrix block multiplication.

 $\underline{\text{exercise } 2}$:

Let A be in $\mathbb{R}^{n \times n}$ and define $\varphi(x, y) = x^T A y$ for x, y in \mathbb{R}^n .

(i). Show that φ is symmetric if and only if A is symmetric.

(ii). Assume that φ is symmetric and non-negative, that is, $\varphi(x, x) \ge 0$ for all x in \mathbb{R}^n . Show that φ is definite if and only if A is invertible.

 $\underline{\text{exercise } 3}$:

Let V be a vector space over \mathbb{R} and <,> a scalar product on V.

(i). Assume that $\langle \rangle$ is positive definite. Let v, w be in V. Show that dim span $\{v, w\} \leq 1$ if and only if $|\langle v, w \rangle| = ||v|| ||w||$.

(ii). Is that still true if we don't assume that \langle , \rangle is definite?

 $\underline{\text{exercise } 4}$:

Find a an example of a vector space (V, φ) where φ is bilinear, symmetric, and nondegenerate, and W is a subspace such that the sum $W + W^{\perp}$ is not direct.

 $\underline{\text{exercise } 5}$:

Let (V, φ) be a finite-dimensional vector space where φ is bilinear, symmetric, and nondegenerate and W be a subspace. Show that $W^{\perp \perp} = W$.

<u>exercise 6</u>: 3.3. 11 and 13.

<u>exercise 7</u>: 5.3.2.