$\underline{\text{exercise } 1}$:

Let A be in $K^{n \times n}$. Show that there exist two invertible matrices P, Q in $K^{n \times n}$, r in $\{0, .., n\}$ such that $A = PI_{r,n}Q$. Here $I_{r,n}$ is the diagonal matrix with r ones followed by zeros on the diagonal. **Hint:** Consult the proof of the dimension formula.

$\underline{\text{exercise } 2}$:

Let \overline{A} be in $K^{n \times n}$ such that for all B be in $K^{n \times n}$, AB = BA. Show that A is a multiple of the identity matrix. **Hint:** In a first step use the basis matrices E_{ij} to show that A is diagonal. Alternatively, you may use elementary matrices.

<u>exercise 3</u>:

True or false: there is a dimension $n \geq 2$ such that if A in $K^{n \times n}$ has only zeros on its diagonal, then A is singular.

$\underline{\text{exercise } 4}$:

2.3.27. Suggestion: Introduce C = AB and D = BA. Write the i, j entries of C and of D using the entries of A and B.

<u>exercise 5</u>: 2.3.35. Suggestion: prove by induction that on k that $A^k e_j = 0$ for all j = 1, ..., k.

 $\underline{\text{exercise } 6}$:

Write the permutation $\begin{pmatrix} 4 & 1 & 2 & 3 \end{pmatrix}$ as a product of transpositions. What is its sign?

$\underline{\text{exercise } 7}$:

Let A be the matrix in $K^{n \times n}$ with e_n in the first column, and e_{j-1} in column $j, 2 \le j \le n$. Find det A.

 $\underline{\text{exercise } 8}$:

Let [a, b] be an interval in \mathbb{R} and $x_0 < x_1 < ... < x_n$ be in [a, b]. Let $y_0, ..., y_n$ be in \mathbb{R} . Use the Vandermonde determinant V to show that there is a unique polynomial P in $\mathbb{R}[X]$ with deg $P \leq n$ such that $P(x_j) = y_j$, for j = 0, ..., n. If $x_j = j\frac{b-a}{n}$, for j = 0, ..., n, and $0 < b - a \leq 1$, show that $|V| \leq (\frac{b-a}{n})^n$.