exercise 1:

Let $f:[a,b] \to \mathbb{R}$ be a function that has n+1 derivatives. Let $P_n(x) = \sum_{k=0}^n f^{(n)}(a) \frac{(x-a)^n}{n!}$. Show that

$$f(b) - P_n(b) = \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt.$$

Hint: Argue by induction.

exercise 2: This exercise is the continuation of exercise 5, homework 5. (iii). Show that $\cos^2 x + \sin^2 x = 1$, for all x in \mathbb{R} . Fix y in \mathbb{R} , and let

$$g(x) = \cos(x+y) - \cos x \cos y + \sin x \sin y,$$

for all x in \mathbb{R} . (iv). Show that g'' = -g. (v). Show that the function $g^2 + g'^2$ is constant and infer that g(x) = 0, for all x in \mathbb{R} .

 $\frac{\text{exercise } 3}{8.5.J}$