exercise 1:
*#* this optional problem is the continuation of hw 2 ex 1***
(vii). We proved that for any integer k greater than 2,
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Show that the series
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converges. Hint: It suffices to show that
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converges.
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(viii). Infer that the sequence ———— converges to a limit C'. Determine C.
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exercise 2:

. = 2" cos(nx)
Show that th —_—
ow that the series nz:% oS

defines a differentiable function g(z) for x in [—1, 1].

exercise 3:

Show that the series Z
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W defines a differentiable function g(z) for x in (—1,1).
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exercise 4:

(). Show that the series of functions Z(—l)"m" converges pointwise for z in (—1,1) and

n=0
write the resulting sum in closed form.

(ii). Fix Ain (0,1). Show that Z " is uniformly convergent in [—A, A].
n=0

(iii). Show that In(1 + ) = Z apx"”, for all x in (—1,1). Find a,,.
n=0

exercise 9:
Let f:]0,1] — R be a Riemann integrable function. Let M > 0 be such that |f(z)| < M,

for all z in [0, 1].
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(i). Show that lim z" f(x)dx = 0.
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(ii). Let a be a real number such that 0 < o < 1. Show that lim nz" f(x)dx = 0.
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(iii). Assume f is continuous at 1. Show that lim nx" f(x)dx = f(1).
n—oo 0

Hint: First prove it if f is a constant function, then use answer from question (ii). by
splitting the interval of integration in two.



