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exercise 1:
*** this optional problem is the continuation of hw 2 ex 1***
(vii). We proved that for any integer k greater than 2,

1

2
(ln(k − 1) + ln k) ≤

∫ k

k−1
lnx dx ≤ ln(k − 1

2
)

Show that the series
∞∑
k=2

∫ k

k−1
lnx dx− 1

2
(ln(k − 1) + ln k)

converges. Hint: It suffices to show that

∞∑
k=2

ln(k − 1

2
)− 1

2
(ln(k − 1) + ln k)

converges.

(viii). Infer that the sequence
n!

nn+
1
2 e−n

converges to a limit C. Determine C.

exercise 2:

Show that the series
∞∑
n=0

xn cos(nx)

x2 + n3 + 1
defines a differentiable function g(x) for x in [−1, 1].

exercise 3:

Show that the series
∞∑
n=0

xn

x2 + n2 + 1
defines a differentiable function g(x) for x in (−1, 1).

exercise 4:

(i). Show that the series of functions
∞∑
n=0

(−1)nxn converges pointwise for x in (−1, 1) and

write the resulting sum in closed form.

(ii). Fix A in (0, 1). Show that
∞∑
n=0

(−1)nxn is uniformly convergent in [−A,A].

(iii). Show that ln(1 + x) =
∞∑
n=0

anx
n, for all x in (−1, 1). Find an.

exercise 5:
Let f : [0, 1] → R be a Riemann integrable function. Let M > 0 be such that |f(x)| ≤ M ,
for all x in [0, 1].

(i). Show that lim
n→∞

∫ 1

0

xnf(x)dx = 0.
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(ii). Let α be a real number such that 0 < α < 1. Show that lim
n→∞

∫ 1−α

0

nxnf(x)dx = 0.

(iii). Assume f is continuous at 1. Show that lim
n→∞

∫ 1

0

nxnf(x)dx = f(1).

Hint: First prove it if f is a constant function, then use answer from question (ii). by
splitting the interval of integration in two.


