exercise 1: Set $I_n = \int_0^{\pi} \sin^n x \, dx$. (i). Compute I_0 and I_1 . (ii). Show that $0 \le I_{n+1} \le I_n$, for all n in N. (iii). Show that $\lim_{n \to \infty} I_n = 0$. **Hint**: We covered a similar case in class. (iv). Show that $nI_n = (n-1)I_{n-2}$, for all integer $n \ge 2$. **Hint**: $\sin^2 x = 1 - \cos^2 x$. Use integration by parts. *** the remaining questions are optional*** (iv). Find a formula for I_{2n} and a formula for I_{2n+1} involving n! and 2^n . (v). Find $\lim_{n \to \infty} nI_nI_{n+1}$. (vi). Find $\lim_{n \to \infty} nI_nI_{n+1}$.

(vi). Find $\lim_{n\to\infty} \sqrt{n}I_n$. Hint: You may use that $\lim_{n\to\infty} I_n$, which was covered in class.

 $\underline{\text{exercise } 2}$:

(i). Let $f : [a, b] \to \mathbb{R}$ be a continuous function such that $f \ge 0$ and $f(x_0) > 0$ for some x_0 in [a, b]. Show that $\int_a^b f > 0$. **Hint**: Use the definition of continuity and $\epsilon = \frac{f(x_0)}{2}$. (ii). Let g be in C([a, b]). Show that g = 0 if and only if $\int_a^b |g| = 0$.

<u>exercise 3</u>: 8.1.A. Hint: find the maximum of f_n .

 $\frac{\text{exercise } 4}{8.1.B}$

<u>exercise 5</u>: 8.1.D

<u>exercise 6</u>: 8.2.B

 $\frac{\text{exercise } 7}{8.2.\text{C}}$