exercise 1:

Let $f : [a, b] \to \mathbb{R}$ be an increasing function. Show that f is bounded and Riemann integrable. **Hint:** Introduce the partition P, $x_j = a + \frac{j}{n}(b-a)$, j = 0, ..., n. Evaluate L(f, P) and U(f, P).

<u>exercise 2</u>: 6.4.A, (a), and (b) only in the case $a \ge 0$.

 $\underline{\text{exercise } 3}$:

(i). Let $f : [a, b] \to \mathbb{R}$ be a convex and differentiable function and x_0 in (a, b). Show that the graph of f is above the through through $(x_0, f(x_0))$. (ii). Let $k \ge 2$ be an integer. Show that

$$\frac{1}{2}(\ln(k-1) + \ln k) \le \int_{k-1}^k \ln x \, dx \le \ln(k - \frac{1}{2})$$

Hint: Use convexity of $-\ln$ for the right hand part. Sketch the graph of $-\ln$ on [k-1,k].

exercise 4:

Define
$$f : [0, 1] \to \mathbb{R}, f(x) = \begin{cases} \sin \frac{1}{x}, \text{ if } 0 < x \le 1\\ 0, \text{ if } x = 0. \end{cases}$$

Show that f is Riemann integrable.

Hint. Fix $\epsilon > 0$. Form lower and upper sums in $[0, \epsilon]$ and in $[\epsilon, 1]$ for an adequately chosen partition.

 $\underline{\text{exercise } 5}$:

Let f be in C([a, b]), and u and v two differentiable functions defined on an interval J and valued in [a, b]. Set $F(x) = \int_{u(x)}^{v(x)} f(t) dt$. Show that F is differentiable in J and find its derivative. **Hint:** $F(x) = \int_{a}^{v(x)} f(t) dt - \int_{a}^{u(x)} f(t) dt$.

<u>exercise 6</u>: 6.4.C. Hint: set $F(x) = \int_a^x f$.

 $\underline{\text{exercise } 7}$:

Let $f: [0,1] \to \mathbb{R}, f(x) = \begin{cases} x^{\frac{3}{2}} \sin \frac{1}{x}, & \text{if } 0 < x \le 1\\ 0, & \text{if } x = 0. \end{cases}$ Show that f is differentiable and that f' is unbounded. $\underline{\text{exercise } 8}$:

- Let k and n be two integers greater or equal than 1. (i). Show that $\frac{1}{k+1} \leq \int_{k}^{k+1} \frac{1}{x} dx \leq \frac{1}{k}$. (ii). Infer that $\ln(n+1) \leq \sum_{k=1}^{n} \frac{1}{k}$.
- (iii). **Optional:** Show that the sequence $a_n = \ln(n+1) \sum_{k=1}^n \frac{1}{k}$ converges.