exercise 1: Define $f: (-1,1) \to \mathbb{R}$, $f(x) = (1+x)^{-\frac{1}{2}}$. (i). Set $a_n = f^{(n)}(0)$. Show that $a_0 = 1$ and if $n \ge 1$, $a_n = \frac{(-1)^n}{2^n} 1 \cdot 3 \cdot \ldots \cdot (2n-1)$. (ii). Find the radius of convergence of $g(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$. (iii). Show that f and g satisfy the differential equation 2y'(1+x) + y = 0 and infer that f = g.

exercise 2:

Using exercise 1, find a power series for $(1 - x^2)^{-\frac{1}{2}}$ and for $\arcsin x$, for x in (-1, 1). Make sure to mention any theoretical result that you are using.

Exercise 3 Optional

With the same notation as in exercise 1 find $\sum_{n=0}^{\infty} \frac{a_n}{n!}$.

Hint: If the sequence b_n is decreasing and convergent to zero then $|\sum_{n=p}^{\infty} (-1)^n b_n| \le b_p$. Derive uniform convergence on the closed interval [0, 1].

Exercise 4

(i). Define
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 and $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$. Find the radius of con-

vergence of these two power series and show that $\frac{d}{dx}\cos x = -\sin x$ and $\frac{d}{dx}\sin x = \cos x$. (ii). Show that $\cos^2 x + \sin^2 x = 1$ for all x in \mathbb{R} . **Hint:** Introduce the function $f(x) = \cos^2 x + \sin^2 x$ and find its derivative.