$\underline{\text{exercise } 1}$:

- *** this optional problem is the continuation of hw1 ex 10^{***}
- (iv). Find a formula for I_{2n} and a formula for I_{2n+1} involving n! and 2^n .
- (v). Find $\lim_{n \to \infty} nI_n I_{n+1}$.
- (vi). Find $\lim_{n\to\infty} \sqrt{n}I_n$. Hint: You may use that $\lim_{n\to\infty} I_n$, which was covered in class.

exercise 2:

(i). Let f be in C([a, b]) such that $f \ge 0$ and $f(x_0) > 0$ for some x_0 in [a, b]. We proved in class that $\int_a^b f > 0$ in the case where $x_0 \in (a, b)$. Prove it in the case where $x_0 = a$. (ii). Let g be in C([a, b]). Show that g = 0 if and only if $\int_a^b |g| = 0$.

<u>exercise 3</u>: 8.1.A. Hint: find the maximum of f_n .

 $\frac{\text{exercise } 4}{8.1.B}$

 $\frac{\text{exercise } 5}{8.1.\text{D}}$

 $\frac{\text{exercise } 6}{8.2.B}$

 $\frac{\text{exercise } 7}{8.2.\text{C}}$

 $\underline{\text{exercise } 8}$:

Let P be a polynomial function. Show that $\sum_{n=1}^{\infty} P(n)x^n$ is a absolutely convergent if |x| < 1and divergent if |x| > 1.

<u>exercise 9</u>: Show that the series $\sum_{n=0}^{\infty} \frac{\cos(nx)}{n^2 + 1}$ defines a continuous function f from \mathbb{R} to \mathbb{R} . exercise 10:

Show that the series $\sum_{n=0}^{\infty} \frac{x^n \cos(nx)}{n+1}$ defines a continuous function f from (-1,1) to \mathbb{R} .

 $\underline{\text{exercise } 11}$:

Let $f_n : [0,1] \to \mathbb{R}$, $f_n(x) = nx^n$, if $0 \le x < 1$, $f_n(1) = 0$. (i). Find, with proof, f, the pointwise limit of f_n . (ii). Find $\int_0^1 f_n$ and $\int_0^1 f$. (iii). Is f_n uniformly convergent?