exercise 1:

Let $f : [a, b] \to \mathbb{R}$ be an increasing function. Show that f is bounded and Riemann integrable. **Hint:** Introduce the partition P, $x_j = a + \frac{j}{n}(b-a)$, j = 0, ..., n. Evaluate L(f, P) and U(f, P).

exercise 2: Let $f: S \subset \mathbb{R} \to \mathbb{R}$ be a Lipschitz continuous function. Show that f is uniformly continuous.

exercise 3: Let $g: (0, \infty) \to \mathbb{R}$, $g(x) = \frac{1}{x}$. Show that g is not uniformly continuous.

<u>exercise 4</u>: 6.4.A, (a), and (b) only in the case $a \ge 0$.

 $\underline{\text{exercise } 5}$:

(i). Let $f : [a, b] \to \mathbb{R}$ be a convex and differentiable function and x_0 in (a, b). Show that the graph of f is above the tangent line through $(x_0, f(x_0))$. (ii). Show that

$$\frac{1}{2}(\ln(k-1) + \ln k) \le \int_{k-1}^k \ln x \, dx \le \ln(k - \frac{1}{2})$$

Hint: Use convexity of $-\ln$ for the right hand part.

 $\underline{\text{exercise } 6}$:

Define
$$f : [0,1] \to \mathbb{R}, f(x) = \begin{cases} \sin \frac{1}{x}, \text{ if } 0 < x \leq 1\\ 0, \text{ if } x = 0. \end{cases}$$

Show that f is Riemann integrable.

Hint. Fix $\epsilon > 0$. Form lower and upper sums in $[0, \epsilon]$ and in $[\epsilon, 1]$ for an adequately chosen partition.

 $\underline{\text{exercise } 7}$:

Let f be in C([a, b]), and u and v two differentiable functions defined on an interval J and valued in [a, b]. Set $F(x) = \int_{u(x)}^{v(x)} f(t) dt$. Show that F is differentiable in J and find its derivative.

<u>exercise 8</u>: 6.4.C. Hint: set $F(x) = \int_a^x f$. $\underline{\text{exercise } 9}$:

integration by parts.

Let $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} x^{\frac{3}{2}} \sin \frac{1}{x}, & \text{if } 0 < x \leq 1\\ 0, & \text{if } x = 0. \end{cases}$ Show that f is differentiable and that f' is unbounded.

oversise 10

exercise 10: Set $I_n = \int_0^{\pi} \sin^n x \, dx$. (i). Compute I_0 and I_1 . (ii). Show that $0 \le I_{n+1} \le I_n$, for all n in N. (iii). Show that $\lim_{n \to \infty} I_n = 0$. **Hint**: We covered a very similar case in class. (iv). Show that $nI_n = (n-1)I_{n-2}$, for all integer $n \ge 2$. **Hint**: $\sin^2 x = 1 - \cos^2 x$. Use