Short-term sensory memory mediates paradoxical neural-behavioral transformation

Hamilton White™-3, Sruti Mallik™#, ShiNung Ching#4, Dirk R. Albrecht#1.2 £ Washington

'Department of Biomedical Engineering, 2Department of Biology and Biotechnology, Worcester Polytechnic Institute UmversitymSt.[OuiS
g g gy gy y
3 ; . e . . .
Worcester Poly_technlc Institute Unllversrfy of Mass.achusetts. Medllcal School _Jomt PhD Program | JAMES MCKELVEY
“Department of Electrical and Systems Engineering, Washington University at St Louis [*,# equal contribution] SCHOOL OF ENGINEERING
Introduction & Objectives Experiment: Adaptation without habituation Results: Behavior Invariance, Habituation,
« Sensory neural networks mediate state-dependent transformations from  Neural responses adapt A , O:1M DApulses, 20 s Bl and Beha Vloral In VEISION
external stimuli to behavioral response, allowing dynamic adjustment to the ~7-fold over 24 repeated E1s 512_ . Th 4ol dicts that stimul ot A oty oycle
environment and organism needs. pulses of 0.1 uM diacetyl SR SN © model predicts that stimuius concentration ~ emed25 05 075
_ (DA) for 20 s every minute 2. M 2 05 and duty cycle determine if behavior responses <.,
+ e seekttor:mcover rules that governl thej,z_neural comdp?tatlons and how (A.B) 0o AAMRAARRARERER o e remain invariant or habituate. £, -
emergent phenomena arise in normal and disease conditions. D) 0 10 2030 0 10 20 30 _ o _ _ | £ ;
) . | . Behavioral responses remain e Time (5 . A paradoxical regime is predicted, in which s
* For example, neurons in garly olfalctory n.et.works .adapt. (reduce) their nvariant to repeatod pulses G otoasee - D behavioral responses habituate below zero § oo
responses to r1e£)et|t|ve stimuli, while retaining their ability to respond to a and do not habituate (C.D) z UUUWMMAW/UU{MMM z o B response and reverse valence, i.e. attractive : Sfi
. . : . T Fu o . . - . . . . £ U
novel stimulus’-<. Neural adaptation can lead Stimulus ’ 3 Fuol) S stimuli elicit aversive behavior. This behavioral %

. h = - . : . Pay b o ot e e bt R A e i e ) . PR 10 15 20 25 30 35 40 45 50
either to invariant (consistent) behavior, or Sensory - S R R L s p e dh kAR S . inversion is predicted to occur at long duty Pulse duration (5)
habltuatlon (redUCed behaV|Or response)_ neurons T %T > ° HOW dO behaVior responses E@’ Rev R RRERRANE AR AR RN AR g cycle and |0W stimulus intensity (A,B) I:ehavior ratio, trial 24 vs. trial 1

. . . . . . AIA — AIZ remain constant durin 3 0.3 mm/s 3 . : . o2 o 62 00 06 oa ™
We aim to investigate neural adaptation and its Sensory N ¥ b oot o g L MMM E A T\ . Experimental measurements confirm this new, 02 0 02 04 06 08 1
flexible translation into behavioral decision- y NDA}: Sensory adaptation: 0o 5 T7o' ( .1)5' 20 0 20 40 ?O o(io 40 60 unexpected phenomenon (C,D). Inversion  Habituation Invariance
making in the nematode C. elegans. . e e

Command VD «— AVB odel prediction Xperimen xperiment: ulses S
+ C. elegans contains 302 neurons and ~7000 interneurons 2?2 e B 2" % e C i::’ 00 omey D e
. . .. intensity concentration
synapses. Each neuron is individually - DAVA <> DB,VB e ] L, S a2 f\Mﬁ‘f LAtk o LA 50
addressable via genetic expression. Repetitive neurons v y Be'?ﬁi';{% " Be'?ﬁi‘:;ﬁ ﬁ g ™ |
stimulation elicit Charazc’ieristic adaptation and ?_ \\_'é» « Model simulations of neural 3 Stimulus pulses, 20 s Trial 1 Trial24 1 | g p—
habituation responses<~. Behavior Reverse  Forward i M 2 Experiment 063 105 o6l UM 3 |
p Pause OUtPUt Wlth Optlmlzed é 1 L 05& ‘f"*-""'-"""""'"\-"-—- L Iﬁ M i ch Rev A
parameters demonstrate neural ¢ I N Vo = o3 -
adaptation without habituation. = k L D 0o N . Trial repeat
0.4 fl : LA M
« Parameters include: FEMMMW L [ % gﬁ g QWC 20s (Invariant) 50s (Inversion)
Input from receptors 1 v andt y— rate of decay for é of! T — \ \& L_E' :\leiu?rise
. . § o g o g 0a} — 0.75 0.01 uM Y Trial 1 100%
Computational Model: fast” and “slow” latent states S gl A v ek
_ , _ Sensory §FN§§ ,,,,,,,,,,,,, e % A=% ﬂ QGD = T”a' 24 i

 Two timescales of information are embedded ne_l:ral * drift v and drift y— rate of g S Lo w TR T _m TR S

in the neural response. Hnts forgetting prior input and history & st o e e epe reepe 2 I ., B
“foat” ’ - > « b —scaling factor input to memor v g Fwd % Aﬂﬁ?ﬂl

* (1) —"fast’ latent representation 15 e P e . s e * Notably, sensory neural response alone & ' . .

* (1) — “slow” residual memory 1) erm| | B * (Gaussian mixture components cannot predict resulting behavior! 5. ﬁ Qm%
o (1) € R™ modeling behavior from latent > (ool & & T Similar neural responses can generate g Rl o |

* An optimization-based framework converts Ir_:;?enéentations N states 2 Fwd| T — invariant or inverted behavior (E) 0 30 60 0 _ 30 60

odor cues to neural responses. ) < S 0 £ po, MRMMRDMOMOMMORARINOMAN i BalEM | | Time (s) Time (s)
Decision * ensory memory y % M (TTTTTTTTTT 0
J(x) = t 1[@ —2)' Qv — z) + x!'Sx + X' Rx]|dt Behavior /ll\t accumulates over repeated : TR 15 20 0 30 600 30 60 S Summary & Futu re directions
coct 0 2| | o | Reverse  Forward stimulation. Experiment Time (min) Time (s) Time (s) Trial #
0s | Pause
function A o ey oy fluctuations - A t\ivohtir;]ebscale r:jormati\lle (Toile:_ of C._tilegfgshser?sorly/hreg!::on?es
- - matched observed neural adaptation without behavioral habituation.
Results: Model predicts adaptation levels
» Calcium dynamics are obtained from the optimal motif as follows: : . * The model also predicted an emergent, paradoxical stimulus-to-behavior
- for all stimulation patte 'S inversion that occurs at high duty cycle and low stimulus intensity.
nput —— > Q,R, S ﬂ» ) f X—(t)» Lowpassfilterlmb g Hf(t) « Behavioral inversion was i_ndeed observecj in C. elegans experimentgl dgta.
Optimization o actvly » Using model parameters optimized with one experimental dataset (20s The system enables a rapid model-experiment feedback loop for validation.
framework non-linearity every 60s, 1 yM), neural responses were simulated to varying stimulus »  Our integration of theory and modeling affirms the role of dynamical
. A Bayesian decoder generates behavioral decision probability. pulse duration (PD), inter-trial interval (ITl), and duty cycle (DC = PD /1TI). processes, beyond just primary neural response, in mediating behavior.
- Model allows for non-monotonic stimulus intensity encoding®. * Nine stimulus A - kel simiations * How latent representatior)s are _encoded in C. elegans _neur_al circuitry is
atterns explored o ITi24s  83% ITI60s  33% ITI150s  13% currently unknown. Candidates include neuropeptide signaling and
p p 120- 2 I.lllllllllllll .I H H EH = I | O y g g
higher and lower i S 05_\.‘_\ 2057 e T interneuron dynamics. Future study with mutants altering these signaling
Experimental Data: A s D vy R PD, ITI, and DC. Ol - B e pathways will elucidate these mechanisms.
: PDMS : : £ \%'}i.l . . .(%U 80° : § ------EﬁEEr-imenE A\.NA-SeE SO.I'\/ ne.u Ll =

» Microfluidic experiments - . W Swaight Ny * Adaptation in peak 3 | ;" 00 | 20s0 T 2080

measure C. elegans | s neural responses 3 :

was predicted to be
Pause ~ greater for higher

neural responses to M
precise chemical AsH | Awa

il L i References & Support
| 16 12 18 24 1 GT:;(LS)Z“ 6 12 18 24

N
o

1. R.F. Thompson. “Habituation.” International Encyclopedia of the Social & Behavioral Sciences, (2015): 480-483

DC 13%

. . cecchoce | oIV dutv cvcle and - c Model simulations 2. Rankin, C.H., et al. “Habituation revisited: an updated and revised description of the behavioral characteristics
stimulation by fluorescent ] | S50 A% O\ Reverse N~ ycy : _ S s 0 1m0 .@\ I1T5I0 DC 13% of habituation.” Neurobiology of learning and memory 92.2 (2009): 135-138.
calcium imaging and the 0000 OO0 _- AN (short) : shorter inter-trial Intertrial interval (s) 505 8 5505 ° ? M@ 3. Larsch, J., Veptimiglia, D., Bargmann, C.l., and Albrecht, D.R. “High-throughput imaging of neuronal activity in
3.5 M X OO0 e ' _ interval. ] 248 83% Caenorhabditis elegans” PNAS 110.45 (2013):E4266-E4273.

sensor GCaMP= (A). AT A~ I I I I £ % 100 06/5/1;@1500 6/53—_1;—1?0 4. Larsch, J., et al. “A circuit for gradient climbing in C. elegans chemotaxis.” Cell Reports 12.11 (2015):1748-1760.
. _ agegage ASH:GCaMP  AWA:GCaMP : « Experimental o Experiment 5. Lagoy, R.L., and Albrecht, D.R. “Automated fluidi delivery from multiwell plates to microfluidic devices for high-

Beha\_/lpr responses were - - (long) ~ P Ji in C ‘ j ‘«— Pulse duration (PD) % "o F M throughput experiments and microscopy” Scientific Reports (2018): 6217.

quantlfled dsS Iocomotory iter®) 100 108 0 1o ' recoraings in «. Intertrial interval (ITI) Tos5 B 6. Albrecht, D.R. and Bargmann, C.I. “High-content behavioral analysis of Caenorhabditis elegans in precise

state probabilitv® (B) 9 elegans show close ) \ 6"9\@ o spatiotemporal environments.” Nature Methods 8.7 (2011): 599-605.

p y - l_"S‘H‘gg a7 | [\ (\ - corres ondence to Duty cycle (DC = )ITI % 50 ‘IOO 0 100 1500 50 100 150
5 N | L \ IP— P oty eyl () Pulse drton 5 el mrvl ) This work was supported by NSF 1724218: CRCNS Collaborative Research: Studying Competitive Neural

)l T 5. ) simulations. Network Dynamics Elicited By Attractive and Aversive Stimuli and their Mixtures



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4



