
Analysis:  

At incline 1, we measured the velocity of an object rolling down a slope at distances of 0.05, 0.1, 

0.2, 0.4, 0.6, and 0.8 meters, recording three trials for each distance. We then averaged the 

velocities in Google Sheets to obtain a mean velocity for each point. The same procedure was 

repeated for incline 2, which was steeper and therefore expected to produce higher velocities. 

Once all the data was collected, the next step was to find a way to represent the relationship 

between velocity and distance with a linear graph. We know the relevant kinematic variables: 

●​  (measured velocity) 𝑣2

●​  m/s (since the object starts from rest) 𝑣
0

=  0

●​  (distance traveled) Δ𝑥

●​  (acceleration, assumed constant due to gravity). 𝑎

The kinematic equation that relates these quantities is: 

 𝑣2 = 𝑣
0

2 +  2𝑎Δ𝑥

Since , this simplifies to: 𝑣
0

=  0

 𝑣2 =  2𝑎Δ𝑥

 

At first glance, this equation looks quadratic. However, if we plot  on the y-axis and  on the 𝑣2 Δ𝑥

x-axis by substituting y for  and x for , the equation takes the linear form:  𝑣2 Δ𝑥 𝑦 =  2𝑎𝑥



This is equivalent to the slope-intercept form, , with slope  and 𝑦 =  𝑚𝑥 +  𝑏 𝑚 =  2𝑎

intercept  . In other words, plotting  against  produces a straight line, and the 𝑏 =  0 𝑣2 Δ𝑥

acceleration can be determined directly from the slope of the best-fit line as: 

 𝑎 =  ½ • 𝑚

Using Google Sheets, I squared the velocity values, plotted Δx versus v2, and added trendlines 

with equations for both inclines. These graphs allow us to visualize the linear relationship and 

calculate the acceleration for each incline from the slopes. 

 
 

 
 

Incline 1 Line of Best Fit:  𝑣2 = 1. 79∆𝑥 + 0. 0196

Incline 2 Line of Best Fit:  𝑣2 = 2. 45∆𝑥 − 0. 0146

Using the graphs, we can calculate the acceleration for each incline. For incline 1, the slope of 

the line of best fit is . Since the slope corresponds to , dividing by  gives an acceleration 1. 79 2𝑎 2

of: 

 𝑎 = 1.79
2 = 0. 895 𝑚/𝑠2



For incline 2, the slope of the trendline is . Dividing by  leads to the acceleration 2. 45 2

becoming: 

 𝑎 = 2.45
2 = 1. 225 𝑚/𝑠2

These results are consistent with expectations, as the steeper incline produces a larger 

acceleration. 

 

Conclusion:  

Now that we have the experimental values for the acceleration in both incline 1 and 2, we can 

compare that with the expected value. This value is found by using the equation , 𝑎 = 𝑔𝑠𝑖𝑛θ

where  is the magnitude of the acceleration , and  is the angle of the incline (the 𝑔 (9. 8 𝑚/𝑠2) θ

angle opposite the stack of books supporting the ramp). 

In incline 1, . 𝑠𝑖𝑛θ = 𝑜𝑝𝑝
ℎ𝑦𝑝 = 11.6

108.4

Using this, the acceleration can be found by multiplying  by the magnitude of gravity, which 𝑠𝑖𝑛θ

gives: 

 𝑎 = 9. 8 • 11.6
108.4 = 1. 049 𝑚/𝑠2

In incline 2, . 𝑠𝑖𝑛θ = 𝑜𝑝𝑝
ℎ𝑦𝑝 = 15.5

109.6

Using this, the acceleration can be found by multiplying  by the magnitude of gravity, which 𝑠𝑖𝑛θ

gives: 

 𝑎 = 9. 8 • 15.5
109.6 = 1. 386 𝑚/𝑠2

Using these values, the percent error can be found using the equation: 

 % 𝑒𝑟𝑟𝑜𝑟 =  | 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 |



In incline 1: 

 % 𝑒𝑟𝑟𝑜𝑟 =  | 1.049 𝑚/𝑠2 − 0.895 𝑚/𝑠2

1.049 𝑚/𝑠2 | = 14. 68%

In incline 2: 

 % 𝑒𝑟𝑟𝑜𝑟 =  | 1.386 𝑚/𝑠2 − 1.225 𝑚/𝑠2

1.386 𝑚/𝑠2 | = 11. 62%

 

Lab Results: 

Incline 1: 

​ Experimental Value:   0. 895 𝑚/𝑠2

​ Expected Value:  1. 049 𝑚/𝑠2

​ Percent Error:  14. 68%

Incline 2: 

​ Experimental Value:   1. 225 𝑚/𝑠2

​ Expected Value:  1. 386 𝑚/𝑠2

​ Percent Error:  11. 62%

 

Sources of Errors: 

●​ One source of error comes from how the angle of the incline was measured. Since we 

could not directly measure the angle, we instead measured the hypotenuse of the ramp 

and the height of the stack of books with a meter stick. This method is limited in 

precision because the meter stick is rigid, marked only to the nearest tenth of a 

centimeter, and difficult to align perfectly. As a result, the calculated angle may have 



been slightly smaller than the true angle, which would make the expected acceleration 

appear lower than it actually was. 

●​ Another factor is friction between the cart and the track. Although small, this force 

opposes the motion of the cart, reducing its acceleration compared to the theoretical 

value. Similarly, air resistance, while minor, also acts against the cart’s motion. Even at 

lower speeds or less steep angles, air resistance is still present and contributes to a lower 

measured acceleration. 

●​ On top of this, any small delay or problem with the photogate’s detection changes the 

measured velocity and therefore affects the values used to find the slope, possibly 𝑣2 

causing the measured acceleration to be lower than it actually is. 

●​ Finally, there may have been inaccuracies in the measurement of displacement along the 

track. Because the stick on top of the cart was tilted toward the photogate sensor during 

the experiment, the recorded distances may have been slightly longer than the true 

distances traveled by the cart. This would distort the relationship between velocity and 

displacement, and affect the calculated acceleration. 

Final Statement: 

Although the measured accelerations (  and ) are lower than the predicted 0. 895 1. 225 𝑚/𝑠2

values (  and ), they show the expected trend of larger acceleration for a 1. 049 1. 386 𝑚/𝑠2

steeper incline and are within a reasonable experimental error range.  Due to a multitude of 

sources of error, it can be expected that the experimental values are different from the expected 

ones, and it is reasonable to assume that a percent error between 10 and 15% is not out of the 

ordinary. 


