WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

Engineering Experimentation ME-3901, D'2012

Lecture 12 25 April 2012

General information Office hours

<u>Instructors</u>: Cosme Furlong Office: HL-151 <u>Everyday</u>: 9:00 to 9:50 am Christopher Scarpino Office: HL-153 During laboratory sessions

Teaching Assistants: During laboratory sessions

Equivalent systems

Analysis of a single degree of freedom system

Analysis of a single degree of freedom system First case: $F(t) \neq 0$ – Forced vibrations

Governing equation:
$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F(t)$$

Governing equation can be written as:

$$\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \frac{k}{m}x = \frac{F(t)}{m} \longrightarrow \frac{d^2x}{dt^2} + 2\lambda\frac{dx}{dt} + \omega^2 x = F'(t)$$

Solution has the form:

$$x(t) = x_c(t) + x_p(t)$$

 $x_c(t)$ Complementary solution

 $x_p(t)$ Particular solution

Solution requires the method of *undetermined coefficients*

Analysis of a single degree of freedom system First case: $F(t) \neq 0$ – Forced vibrations

Governing equation:
$$\longrightarrow \frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = F_o \sin(\gamma t)$$

Solution has the form: $x(t) = x_c(t) + x_p(t)$

with:
$$\sin(\phi) = \frac{C_1}{A}$$
; $\sin(\theta) = \frac{-2\lambda\gamma}{\sqrt{(\omega^2 - \lambda^2)^2 + 4\lambda^2\gamma^2}}$
 $\cos(\phi) = \frac{C_2}{A}$; $\cos(\theta) = \frac{\omega^2 - \lambda^2}{\sqrt{(\omega^2 - \lambda^2)^2 + 4\lambda^2\gamma^2}}$

Analysis of a single degree of freedom system First case: $F(t) \neq 0$ – Forced vibrations

REVIEW - Lecture 10: section on accelerometers

MEMS sensors & actuators: some applications

How DMDTM Technology works

MEMS sensors: some applications (MEMS - Microelectromechanical Systems)

MEMS accelerometers

Simplified view of a sensor subjected to acceleration

MEMS accelerometers: ADXL 150 Dual-axes accelerometers

MEMS accelerometers: ADXL 150 Dual-axes accelerometers

MEMS accelerometers: ADXL 202 Dual-axes accelerometers

MEMS accelerometers: ADXL 202 Proof mass has dimensions of $600 \times 600 \times 3 \ \mu m^3$

One set of spring elements

Capacitive electrode on the substrate

One set of capacitive combs

MEMS accelerometers: ADXL 202

Dual-axes accelerometers

(Courtesy of Analog Devices Inc., Norwood, Massachusetts.)

MEMS accelerometers: ADXL 202

- Provide optimum substitution for typical piezoelectric accelerometers because of their
 - high resonance frequency
 - Iight weight, small size, low power use
- Some properties of the Analog Devices' ADXL202 dual-axes accelerometer include

Specifications of Analog Devices ADXL202			
Measurement range	±2 g	Operating voltage	3.0-5.25 V
Sensitivity	312 mV/ g	Mass	$160 \pm 10 \text{ mgr}$
Resonance frequency	10 kHz	Operating temperature	[-40,85] ⁰C

ADXL202 packages